Arithmetic series Ans

0 min

0 marks

1. (a) The sixth number is 22
(C1)
(b) $u_{200}=2+199 \times 4$ $=798$
(M1)(A1)(A1)
(A1) (C4)
Note: Award (A1) for $a=2$ stated or used, (A1) for $d=4$ stated or used.
(c) $S_{90}=\frac{90}{2}(2 \times 2+89 \times 4)$ or $\frac{90}{2}(2+358)$
(M1)(A1)
$=16200$
(A1) (C3)
[8]
2. (a) $7+5 d=22$
(M1)
Note: Award (M1) for correct substitution in the AP formula. Accept list of numbers as solution.
$d=3$
(b) $u_{12}=7+11 \times 3$
$=40$
Note: Accept list of numbers.
(c) $S_{100}=\frac{100}{2}(2 \times 7+99 \times 3)$
(M1)
Note: Award (M1) for correct substitution in the AP formula.
$=15550$
(A1)(ft) (C2)
Note: Accept 15600
3. (a) $3=57+(n-1) \times(-2)$

OR
$57=3+(n-1) \times(2)$
(A1)(M1)
Note: Award (A1) for 3 or 57 seen as u_{n}, (M1) for correctly substituted formula or list of values seen
$n=28$
(b) $\mathrm{S}_{28}=\frac{28}{2}(57+3)$

OR
$\mathrm{S}_{28}=\frac{28}{2}(2(57)+(28-1) \times-2)$
OR
$\mathrm{S}_{28}=\frac{28}{2}(2(3)+(28-1) \times 2)$
(M1)(A1)(ft)
Note: (A1)(ft) for 28 seen.
Award (M1) for correctly substituted formula or list of values seen.
$\mathrm{S}_{28}=840$
(A1)(ft) (C3)
[6]
4. (a) $20=u_{1}+3 d$
$32=u_{1}+7 d$
Note: Award (A1) for each equation, (A1) for correct answer.
OR
$d=\frac{32-20}{4}$
Note: Award (A1) for numerator, (A1) for denominator.
$d=3$
(b) $\frac{10}{2}(2 \times 11+9 \times 3)$ or $\frac{10}{2}(11+38)$
(M1)(A1)(ft)
Note: Award (M1) for correct substituted formula, (A1) for correct substitution, follow through from their answer to part (a).

OR

$11+14+\ldots+38$
(M1)(A1)(ft)
Note: Award (M1) for attempt at the sum of a list, (A1)(ft) for all correct numbers, follow through from their answer to part (a).
$=245$
(A1)(ft) (C3)
5. (a) $u_{1}=d=1$.
(A1)(A1)
2
(b) Sum is $\frac{1}{2} n\left(2 u_{1}+d(n-1)\right)$ or $\frac{1}{2} n\left(u_{1}+u_{n}\right)$

Notes: Award (M1) for either sum formula seen, even without substitution.

So sum is $\frac{1}{2} n(2+(n-1))=\frac{1}{2} n(n+1)$
(A1)(AG)
2

Note: Award (A1) for substitution of $u_{1}=1=d$ or $u_{1}=1$ and $u_{n}=n$ with simplification where appropriate.
$\frac{1}{2} n(n+1)$ must be seen to award this (A1).
(c) $\frac{1}{2}(200)(201)=20100$
(M1)(A1)(G2) 2
Notes: (M1) is for correct formula with correct numerical input. Original sum formula with u, d and n can be used.
6. (a) (i) $u_{s}=u_{l}+4 d=20$

$$
\begin{equation*}
u_{12}=u_{1}+11 d=41 \tag{M1}
\end{equation*}
$$

Note: (M1) for both equations correct (or (M1) for $20+7 d=41$)
$7 d=21$
$d=3$
(ii) $u_{l}+12=20$

$$
u_{l}=8
$$

$$
(\mathrm{A} 1)(\mathrm{ft}) \quad(\mathrm{C} 1)
$$

(b) $u_{84}=8+(84-1) 3$

$$
=257
$$

(A1)(ft) (C1)
(c) $S_{200}=100(16+199 \times 3)$ $=61300$
(M1)
(A1)(ft) (C2)
7. (a) $4 n-3$
(b) 397
(c) $S_{100}=\frac{100}{2}[(2 \times 1)+(99 \times 4)]$ or $50(1+397)$
$=19900$
8. (a) $d=-7$
(A1) (C1) (M1)
(b) $\quad S_{50}=\frac{50}{2}(2(124)+49(-7))$

Note: (M1) for correct substitution.

$$
=-2375
$$

(c) $124-7(k-1)<0$
(M1)
$k>18.7$ or 18.7 seen
(A1)(ft)
$k=19$
(A1)(ft) (C3)
Note: (M1) for correct inequality or equation seen or for list of values seen or for use of trial and error.
9. (a) $u_{6}=u_{1}+5 \mathrm{~d}=24$
$u_{1}+5 \times 8=24$
$u_{1}=24-40$
$=-16$
(M1)(A1)
(A1) (C3)
(b) $\quad S_{n}=\frac{n}{2}(2 \times-16+(n-1) 8)$
(M1)(A1)
$600=\frac{n}{2}(-32+8 n-8)$
$1200=-40 n+8 n^{2}$
$150=-5 n+n^{2}$
$(n-15)(n+10)=0$
$n=15$ or -10
(A1) (C5)
Note: Not all the steps of working out need to be shown.
10. (a) $a=100 \quad d=25$
$T_{17}=100+(17-1) \times 25$
$=\$ 500$
(A1) (C2)
(b) $\quad S_{n}=\frac{n}{2}(a+l)$

$$
\begin{equation*}
S_{17}=\frac{17}{2}(100+500) \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
=\$ 5100 \tag{A1}
\end{equation*}
$$

Note: Allow follow through from candidate's answer for T_{17}, which is l

OR
$S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$
$S_{17}=\frac{17}{2}\{2 \times 100+(17-1) \times 25\}$
$=\$ 5100$
(A1) (C2)
OR
Table

