IB Questionbank Mathematical Studies 3rd edition

Arithmetic series Ans

0 min 0 marks

1. (a) The sixth number is 22 (C1) (b) $u_{200} = 2 + 199 \times 4$ (M1)(A1)(A1) = 798 (A1) (C4) Note: Award (A1) for a = 2 stated or used, (A1) for d = 4stated or used.

(c)
$$S_{90} = \frac{90}{2}(2 \times 2 + 89 \times 4) \text{ or } \frac{90}{2}(2 + 358)$$
 (M1)(A1)
= 16 200 (A1) (C3)

2. (a)
$$7 + 5d = 22$$
 (M1)
Note: Award (M1) for correct substitution in the AP formula.
Accept list of numbers as solution.
 $d = 3$ (A1) (C2)

(b) $u_{12} = 7 + 11 \times 3$ (M1) = 40 (A1)(ft) (C2)

Note: Accept list of numbers.

[8]

(c)
$$S_{100} = \frac{100}{2} (2 \times 7 + 99 \times 3)$$
 (M1)

Note: Award (M1) for correct substitution in the AP formula.

$$= 15550$$
 (A1)(ft) (C2)

[6]

[6]

(a)

$$3 = 57 + (n - 1) \times (-2)$$
OR
$$57 = 3 + (n - 1) \times (2)$$
(A1)(M1)
Note: Award (A1) for 3 or 57 seen as u_n , (M1) for correctly
substituted formula or list of values seen
$$n = 28$$
(A1) (C3)

(b)
$$S_{28} = \frac{28}{2} (57 + 3)$$

OR
 $S_{28} = \frac{28}{2} (2(57) + (28 - 1) \times -2)$
OR
 $S_{28} = \frac{28}{2} (2(3) + (28 - 1) \times 2)$ (M1)(A1)(ft)
Note: (A1)(ft) for 28 seen.
Award (M1) for correctly substituted formula or list of values
seen.
 $S_{28} = 840$ (A1)(ft) (C3)

4. (a)
$$20 = u_1 + 3d$$
 (A1)
 $32 = u_1 + 7d$ (A1)

Note: Award (A1) for each equation, (A1) for correct answer.

OR

$$d = \frac{32 - 20}{4} \tag{A1}(A1)$$

Note: Award (A1) for numerator, (A1) for denominator.

d = 3 (A1) (C3)

(b)
$$\frac{10}{2}(2 \times 11 + 9 \times 3)$$
 or $\frac{10}{2}(11 + 38)$ (M1)(A1)(ft)

Note: Award (M1) for correct substituted formula, (A1) for correct substitution, follow through from their answer to part (a).

OR

[6]

5. (a)
$$u_1 = d = 1.$$
 (A1)(A1) 2

(b) Sum is
$$\frac{1}{2}n(2u_1 + d(n-1))$$
 or $\frac{1}{2}n(u_1 + u_n)$ (M1)

Notes: Award (M1) for either sum formula seen, even without substitution.

So sum is
$$\frac{1}{2}n(2+(n-1)) = \frac{1}{2}n(n+1)$$
 (A1)(AG) 2

Note: Award (A1) for substitution of $u_1 = 1 = d$ or $u_1 = 1$ and $u_n = n$ with simplification where appropriate.

 $\frac{1}{2}n(n+1)$ must be seen to award this (A1).

(c)
$$\frac{1}{2}(200)(201)=20100$$
 (M1)(A1)(G2) 2

Notes: (*M1*) *is for correct formula with correct numerical input. Original sum formula with u, d and n can be used.*

[6]

6.	(a)	(i)	$u_s = u_1 + 4d = 20$		
			$u_{12} = u_1 + 11d = 41$	(M1)	
			Note: (M1) for both equations correct (or (M1) for $20 + 7d = 41$)		
			7d = 21		
			<i>d</i> = 3	(A1)	(C2)
		(ii)	$u_1 + 12 = 20$		
			$u_1 = 8$	(A1)(ft)	(C1)
	(b)	u ₈₄ =	= 8 + (84 - 1)3		
		=	= 257	(A1)(ft)	(C1)

(c)
$$S_{200} = 100(16 + 199 \times 3)$$
 (M1)
= 61300 (A1)(ft) (C2) [6]

7. (a)
$$4n-3$$
 (A1)

 (b) 397
 (A1)

(c)
$$S_{100} = \frac{100}{2} [(2 \times 1) + (99 \times 4)] \text{ or } 50(1 + 397)$$
 (M1)
= 19 900 (A1)

[4]

8. (a) d = -7 (A1) (C1)

(b)
$$S_{50} = \frac{50}{2} (2(124) + 49(-7))$$
 (M1)
Note: (M1) for correct substitution.

=-2375 (A1)(ft) (C2)

(c)	124 - 7(k - 1) < 0	(M1)					
	k > 18.7 or 18.7 seen	(A1)(ft)					
	k = 19	(A1)(ft)	(C3)				
	<i>Note:</i> (<i>M</i> 1) for correct inequality or equation seen or for lis values seen or for use of trial and error.						

[6]

9. (a)
$$u_6 = u_1 + 5d = 24$$

 $u_1 + 5 \times 8 = 24$
 $u_1 = 24 - 40$
 $u_1 = -16$ (A1) (C3)

(b)
$$S_n = \frac{n}{2}(2 \times -16 + (n-1)8)$$
 (M1)(A1)

$$600 = \frac{n}{2}(-32 + 8n - 8)$$
(A1)
$$1200 = -40n + 8n^{2}$$

$$1200 = -40n + 8n^{2}$$

$$150 = -5n + n^{2}$$

$$(n - 15)(n + 10) = 0$$

$$n = 15 \text{ or } -10$$
(A1) (C5)

Note: Not all the steps of working out need to be shown.

[8]

10.	(a)	a = 100 $d = 25$	
		$T_{17} = 100 + (17 - 1) \times 25$	(M1)
		= \$500	(A1) (C2)

(b)
$$S_n = \frac{n}{2}(a+l)$$

 $S_{17} = \frac{17}{2}(100+500)$ (M1)
 $= \$5100$ (A1)

Note: Allow follow through from candidate's answer for T_{17} , which is l

OR

$$S_{n} = \frac{n}{2} \{2a + (n-1)d\}$$

$$S_{17} = \frac{17}{2} \{2 \times 100 + (17-1) \times 25\}$$
(M1)
$$= \$5100$$
(A1) (C2)

OR

Table

[4]