MATHEMATICAL STUDIES SL ALGEBRA PRACTICE

(a)	300 × = 108	3600 (M1)30000 (A1)	
(b)	(i)	1100000 (A1)	
	(ii)	$1.08 \times 10^6 \text{ or } 1.1 \times 10^6 $ (A1)	[4]

1.

2.

(a) 144.75
$$\left(=\frac{579}{4}\right)$$
 (A1) (C1)
Note: Accept 145

(b)
$$1.4475 \ 10^2$$
 (A1)(ft)(A1)(ft) (C2)
Note: Accept 1.45 10^2

(c) (i)
$$Area = 96m^2$$
 (A1) (UP)

(ii) % error =
$$\frac{(96-90)}{90} \times 100$$
 (M1)
6×100

$$= \frac{20}{90}$$

= $\frac{20}{3}$ % or 6.67% (A1)(ft) (C3)

[6]

3. (a)
$$x^2 = (3.1 \times 10^4)^2$$
 or 31000×31000 (M1)
= 9.61×10^8 (A1) (C2)

(b)
$$\frac{x}{y} = \frac{3.1 \times 10^4}{2.4 \times 10^{-7}}$$

= 1.29 × 10¹¹ (3 s.f.) (A2) (C2)
Note: Award (A1) for 10¹¹, (A1) for 1.29

4. (a) $V = \pi 4.26^{2}(21.58 - 14.35)$ (M1) (A1) (C2) (b) 412.20 (A2) (C2) (c) 410 (A2) (C2) (d) 4.10×10^{2} (A1)(A1) (C2)

Note: Award (A1) for 4.10 and (A1) for
$$10^2$$
.

[8]

1

5. (a)
$$r = \frac{1}{\sin(86^\circ) - \sin(85^\circ)}$$

(= 730.2723312) = 730 to 3 s.f. (A2) (C2)

(b)
$$r_A = \frac{1}{0.998 - 0.996}$$
 (M1)(A1)
= $\frac{1}{0.002} = 500.$ (A1) (C3)

(c)
$$E = \frac{100(730 - 500)}{730}$$
 (M1)(A1)
= 31.5% (to 3 s.f.) (A1) (C3)

[6]

6. (a) 6C+3V = 163.17 (A1) 9C+2V = 200.53 (A1) *Note:* If both addition signs missing, award (A0)(A1)(ft)

(b) GDC use is expected. Solve simultaneously to find V = \$17.69 (\$17.7) (M1)(A1)(ft) (C2) \$18.35 here receives (A0) Note: A reasonable attempt to solve on paper without the GDC can receive (M1).

(c)	$9 \times 18.35 = 165.15$	(M1)
-----	---------------------------	------

= \$14.85 (514.9)	(A1)(ft) (C2)
	<i>Note:</i> If C and V are reversed in (b) and (c) all the marks can be treated as (ft) in (c), however, if the same wrong answer for C app in both (b) and (c) then (c) can receive at most (M1)(A0). In the former case the answers are \$159.21 and \$20.79 respectively.	

7. (a) 50b + 20c = 260 (A1) 1

(b)
$$12b + 6c = 66$$
 (A1) 1

(c) Solve to get
$$b = 4$$
 (M1)(A1)(ft)(G2) 2

Note: (*M1*) for attempting to solve the equations simultaneously

2

(a)
$$220 = 2(W+x)$$
 (M1)
 $220 - 2x$

8.

Therefore
$$W = \frac{220 - 2\lambda}{2}$$
 or $110 - x$ (A1)

(b) Area =
$$x(110 - x)$$
 (allow follow through from part (a)) (A1)

(c) Area =
$$70(110 - 70) = 2800 \text{ m}^2$$
 (allow follow through from part (b)) (A1)

9. (a)
$$l = 5 + 2x$$
 (A1)

(b)	Area of picture plus frame = $(5 + 2x)^2$		
	Therefore $A = (5+2x)^2 - 5^2$		
	OR		
	Area of picture plus frame = 49 cm^2	(M1)	2
	Since it is a square, length of one side = 7 cm	(M1)	
	(2x+5) = 7 cm	(M1)	
	$x = 1 \mathrm{cm}$	(A1)	

(c)
$$(5+2x)^2 - 5^2 = 24$$
 (M1)
 $25 + 20x + 4x^2 - 25 = 24$

$$4x^{2} + 20x - 24 = 0$$
(M1)
$$x^{2} + 5x - 6 = 0$$
(x - 1)(x + 6) = 0
(A1)

$$(x - 1)(x + 6) = 0$$

 $x = 1 \text{ or } x = -6$
The width is 1 cm (A1) 4

Note: For $4x^2 + 20x - 24 = 0$ correctly solved with no work shown and x = 1 give full marks.

[7]

[4]

1

10. (a) (2x-5)(x+1) (A1)(A1)

(b)
$$x = \frac{5}{2} = 2.5 \text{ or } -1$$
 (A1)(A1)

[4]

11. (a) $A = x^2 + x$ or any equivalent unsimplified expression (A1)(A1) (C2) *Note:* Award (A1) for each term.

(b)
$$x^2 + x = 30$$
 or $x^2 + x - 30 = 0$ (C1)
Note: The answer must be an equation.

(c)
$$(x-5)(x+6) = 0$$
 or reasonable attempt to use formula.(M1)(M1)Note: Award (M1) for both signs wrong or one error in quadratic
formula (if used). $x = 5$ or $x = -6$ (A1)(A1)Note: Award (A2) d for $x = 5$ seen with no other working.

(d) x = 5 because **length** must be positive (must have reason for the mark.) (C1)

12.	(a)	(x-5)(x-5)	(M1)(A1)(A1)	(C3)
	(b)	$(x-4)(x \ 1)$	(M1)(A1)(A1)	(C3)
	(c)	x = 4 $x = -1(A1)$	(A1) (C2)	[8]

13. Unit penalty (UP) is applicable where indicated. P (rectangle) = 2x + 2(x + 2) = 4x + 4 cm (C1) (a) (A1) (UP) Side of square = (4x + 4)/4 = x + 1 cm (A1)(ft) (b) (C1) (UP) $2x^2 + 4x + 1 = 49 \text{ or equivalent}$ (i) (c) (M1) (x+6)(x-4) = 0x = -6 and 4 (A1) Note: award (A1) for the values or for correct factors Choose x = 4(A1)(ft) (C3) **Note:** Award (*A1*)(ft) for choosing positive value. Area of square = 5. $5 = 25 \text{ cm}^2$ Note: Follow through from both (b) and (c)(i). (C1) (ii) (A1)(ft) (UP) [6]