Topic 3—Circular functions and trigonometry

Aims

The aims of this section are to explore the circular functions and to solve triangles using trigonometry.

Details

	Content	Amplifications/inclusions	Exclusions
3.1	The circle: radian measure of angles; length of an arc; area of a sector.	Radian measure may be expressed as multiples of π , or decimals.	
3.2	Definition of $\cos \theta$ and $\sin \theta$ in terms of the unit circle. Definition of $\tan \theta$ as $\frac{\sin \theta}{\cos \theta}$.	Given $\sin \theta$, finding possible values of $\cos \theta$ without finding θ . Lines through the origin can be expressed as $y = x \tan \theta$, with gradient $\tan \theta$.	The reciprocal trigonometric functions $\sec \theta$, $\csc \theta$ and $\cot \theta$.
	The identity $\cos^2 \theta + \sin^2 \theta = 1$.		
3.3	Double angle formulae: $\sin 2\theta = 2 \sin \theta \cos \theta$; $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$.	Double angle formulae can be established by simple geometrical diagrams and/or by use of a GDC.	Compound angle formulae.
3.4	The circular functions $\sin x$, $\cos x$ and $\tan x$: their domains and ranges; their periodic nature; and their graphs. Composite functions of the form $f(x) = a \sin(b(x+c)) + d$.	On examination papers: radian measure should be assumed unless otherwise indicated by, for example, $x \mapsto \sin x^{\circ}$. Example: $f(x) = 2\cos(3(x-4)) + 1$.	The inverse trigonometric functions: $\arcsin x$, $\arccos x$ and $\arctan x$.
		Examples of applications: height of tide, Ferris wheel.	

Topic 3—Circular functions and trigonometry (continued)

	Content	Amplifications/inclusions	Exclusions
3.5	Solution of trigonometric equations in a finite interval.	Examples:	The general solution of trigonometric equations.
		$2\sin x = 3\cos x , \ 0 \le x \le 2\pi .$	
		$2\sin 2x = 3\cos x$, $0^{\circ} \le x \le 180^{\circ}$.	
		$2\sin x = \cos 2x , \ -\pi \le x \le \pi .$	
		Both analytical and graphical methods required.	
	Equations of the type $a \sin(b(x+c)) = k$.		
	Equations leading to quadratic equations in, for example, $\sin x$.		
	Graphical interpretation of the above.		
3.6	Solution of triangles.		
	The cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$.	Appreciation of Pythagoras' theorem as a special case of the cosine rule.	
	The sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.	The ambiguous case of the sine rule.	
	Area of a triangle as $\frac{1}{2}ab\sin C$.		
		Applications to problems in real-life situations, such as navigation.	