Topic 5—Vectors 16 hrs

Aims

The aim of this section is to provide an elementary introduction to vectors. This includes both algebraic and geometric approaches.

Details

	Content	Amplifications/inclusions	Exclusions
5.1	Vectors as displacements in the plane and in three dimensions.	Distance between points in three dimensions.	
	Components of a vector; column representation. $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k} .$	Components are with respect to the unit vectors i, j , and k (standard basis).	
	Algebraic and geometric approaches to the following topics:		
	the sum and difference of two vectors; the zero vector, the vector $-\nu$;	The difference of v and w is $v - w = v + (-w)$.	
	multiplication by a scalar, kv;		
	magnitude of a vector, $ v $;		
	unit vectors; base vectors i , j , and k ;		
	position vectors $\overrightarrow{OA} = a$.	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \boldsymbol{b} - \boldsymbol{a}$.	

Topic 5—Vectors (continued)

	Content	Amplifications/inclusions	Exclusions
5.2	The scalar product of two vectors $\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \mathbf{w} \cos \theta$; $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$.	The scalar product is also known as the "dot product" or "inner product".	Projections.
	Perpendicular vectors; parallel vectors.	For non-zero perpendicular vectors $\mathbf{v} \cdot \mathbf{w} = 0$; for non-zero parallel vectors $\mathbf{v} \cdot \mathbf{w} = \pm \mathbf{v} \mathbf{w} $.	
	The angle between two vectors.		
5.3	Representation of a line as $r = a + tb$.	Lines in the plane and in three-dimensional space. Examples of applications: interpretation of t as time and b as velocity, with $ b $ representing speed.	Cartesian form of the equation of a line: $\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}.$
	The angle between two lines.		
5.4	Distinguishing between coincident and parallel lines.		
	Finding points where lines intersect.	Awareness that non-parallel lines may not intersect.	