1. Prove that angle PST $=x$ (ie. the exterior angle of a cyclic quadrilateral equals the opposite interior angle).

2. O is the centre of the circle. Copy and complete the statements below to prove that 'the angle at the centre of a circle is twice the angle at the circumference.'
angle $\mathrm{OPQ}=\square$ (triangle OPQ is isosceles)
angle $\mathrm{POQ}=\square$ (sum of angles in a triangle $=180^{\circ}$)
angle $\mathrm{ORQ}=$ \square (triangle ORQ is isosceles)

angle $\mathrm{ROQ}=\square$ (sum of angles in a triangle $=180^{\circ}$)
angle $\mathrm{POR}=360-$ angle $\mathrm{POQ}-$ angle ROQ (sum of angles at a point add up to 360°)
$\angle \mathrm{POR}=360-(\square)-(\square)$
$=360-\square+\square-\square+\square$
$=\square+\square$
$=2(\square+\square)$
This proves that angle POR is twice the angle PQR, ie. the angle at the centre of the circle is twice the angle at the circumference.
