3D Trig MS

0 min
0 marks

1. (a) $l=\sqrt{8^{2}+8^{2}}$
(M1)
(A1)
(b) $\begin{array}{rllll}L=\sqrt{\sqrt{128^{2}}+8^{2}} & \text { OR } & L=\sqrt{11.3^{2}+8^{2}} & \text { (allow ft from (a)) } \\ & =\sqrt{128+64} & \text { OR } & =\sqrt{127.69}+64 & \text { (M1) } \\ & =13.9(3 \text { s.f.) } & \text { OR } & =13.8 \text { (3 s.f.) } & \end{array}$
2. (a) $\sqrt{5^{2}+1^{2}}=\sqrt{26}($ or 5.10 (3 s.f.) $)$
(b) $\sqrt{4^{2}+\sqrt{26}^{2}}$

$$
=\sqrt{42}=6.48 \text { (3 s.f.) }
$$

(M2)(A2) (C4)
(M2)
(A2) (C4)
[8]
3. (a) $\mathrm{AC}=\sqrt{(22.5)^{2}+30^{2}}$
(M1)
$=37.5 \mathrm{~cm}$
(b) $\tan \mathrm{GA} \mathrm{C}=\frac{40}{37.5}$

GÂC $=46.8^{\circ}$ (or 0.818 radians)
4. Unit penalty applies in parts (a) and (b)
(a) $\mathrm{AC}^{2}=7.2^{2}+9.6^{2}$

Note: Award (M1) for correct substitution in Pythagoras Theorem.
UP $\quad \mathrm{AC}=12 \mathrm{~m}$
(b) $\mathrm{AG}^{2}=12^{2}+3.5^{2}$

Note: Award (M1) for correct substitution in Pythagoras Theorem.

UP $\quad A G=12.5 \mathrm{~m}$
(A1)(ft) (C2)
Note: Follow through from their answer to part (a).
(c) $\tan \theta=\frac{3.5}{12}$ or $\sin \theta=\frac{3.5}{12.5}$ or $\cos \theta=\frac{12}{12.5}$

Note: Award (M1) for correct substitutions in trig ratio.
$\theta=16.3^{\circ}$
(A1)(ft) (C2)
Notes: Follow through from parts (a) and/or part (b) where appropriate. Award (M1)(A0) for use of radians (0.284).
5. Note: Unit penalty (UP) applies in part (a)
(a) $\mathrm{PB}=\frac{1}{2} \sqrt{40^{2}+40^{2}}=\sqrt{800}=28.28$ (28.3)
(M1)(A1)
Note: Award (M1) for correct substitutions, (A1) for correct answer.

UP $\quad \mathrm{OB}=\sqrt{40^{2}+28.28^{2}}=49.0 \mathrm{~cm}(\sqrt{2400} \mathrm{~cm})$
(M1)(A1)(ft) (C4)
Note: Award (M1) for correct substitution, can (ft) from any answer to PB.
(b) $\sin ^{-1}\left(\frac{40}{49}\right)$

OR

$$
\begin{align*}
& \cos ^{-1}\left(\frac{28.28}{49}\right) \\
& \text { OR } \\
& \tan ^{-1}\left(\frac{40}{28.28}\right) \tag{M1}
\end{align*}
$$

$$
=54.7(54.8)
$$

(A1)(ft) (C2)
Note: Award (M1) for any correct trig. ratio. In radians $=0.616$, $\operatorname{award}(M 1)(A 0)$.

Note: Common error: (a) $O B=\sqrt{40^{2}+20^{2}}=44.7 \mathrm{~cm}$.
Award (M0)(AO)(M1) (A1)(ft), and (b) angle $O B P=63.4^{\circ}\left(63.5^{\circ}\right)(M 1)(A 1)(f t)$.
6. Unit penalty ($\mathbf{U P}$) applies in parts (a) and (b) in this question.
(a) $\mathrm{VM}^{2}=13^{2}-5^{2}$
(M1)
UP
$=12 \mathrm{~cm}$
(b) $\begin{aligned} & \quad h^{2}=12^{2}-5^{2}(\text { or equivalent }) \\ & =10.9 \mathrm{~cm}\end{aligned}$
(M1)
UP
(A1)(ft) (C2)
(c) $\cos \theta=\frac{5}{12}$ (or equivalent)
$\theta=65.4^{\circ}$
Note: Accept $\theta=65.3^{\circ}$ (use of 10.9 with sine ratio).

