1)

(a) $\quad \sin \left(55^{\circ}\right)=\frac{3}{\mathrm{AD}}$
(M1)(A1)
$\mathrm{AD}=\frac{3}{\sin \left(55^{\circ}\right)}$
$\mathrm{AD}=3.66232=3.66 \mathrm{~m}$ to 3 s.f. (units not required).
(M1)
(A1)
(C4)
(b) $\quad \mathrm{DB}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}=3.66232^{2}+7^{2}$
(M1)(A1)
$\mathrm{DB}^{2}=62.4126$ hence $\mathrm{DB}=7.90 \mathrm{~m}$ (units not required).
(A1)(A1)
Note: Use of 3.66^{2} makes no difference to final answer.
Award at most (M0)(A0)(A0)(A1)ft for an incorrect cosine rule formula.
Award at most (M1)(A0)(A0)(A1)ft for incorrect substitution into correct cosine rule formula.
2)
(a) $\mathrm{XM}=2$
(A1)
(M1)(A2)
(C3)
(b) $\mathrm{DM}=\sqrt{(9+4)}=\sqrt{13}(=3.61)$
(M1)(A1)
(c) $\quad \tan \mathrm{DMX}=\frac{3}{2}$

Note: Award (M1) for the correct angle, (A1) for the correct ratio.
angle $\mathrm{DMX}=56.3^{\circ}$
(C4)
OR
$\sin \mathrm{DMX}=\frac{3}{3.61}$
(M1)(A1)
angle $\mathrm{DMX}=56.2^{\circ}$
OR
\cos DMX $=\frac{2}{3.61}$
(M1)(A1)
angle DMX $=56.4^{\circ}$
Note: Accept correct answer given in radians, or degrees, minutes and seconds.
3)

Unit penalty (UP) applies in parts (a) and (b) in this question.
(a) $\mathrm{VM}^{2}=13^{2}-5^{2}$

$$
=12 \mathrm{~cm}
$$

(b) $h^{2}=12^{2}-5^{2} \quad$ (or equivalent)

$$
\begin{equation*}
=10.9 \mathrm{~cm} \tag{C2}
\end{equation*}
$$

(M1)
(A1)(ft)
(c) $\cos \theta=\frac{5}{12} \quad$ (or equivalent)

$$
\theta=65.4^{\circ}
$$

Accept $\theta=65.3^{\circ}$ (use of 10.9 with sine ratio).
4)
(a) $\mathrm{PB}=\frac{1}{2} \sqrt{40^{2}+40^{2}}=\sqrt{800}=28.28(28.3)$
(M1)(A1)

Note: Award (M1) for correct substitutions, (A1) for correct answer
(UP) $\quad \mathrm{OB}=\sqrt{40^{2}+28.28^{2}}=49.0 \mathrm{~cm}(\sqrt{2400} \mathrm{~cm})$
(M1)(A1)(ft)
(C4)

Note: Award (M1) for correct substitution, can (ft) from any answer to PB.
(b) $\sin ^{-1}\left(\frac{40}{49}\right)$

OR
$\cos ^{-1}\left(\frac{28.28}{49}\right)$
OR
$\tan ^{-1}\left(\frac{40}{28.28}\right)$
$=54.7(54.8)$
(M1)
(A1)(ft)
(C2)
Note: Award (M1) for any correct trig. ratio.
In radians $=0.616$, award $(\mathbf{M 1})(\mathbf{A 0})$
Note: Common error: (a) $\mathrm{OB}=\sqrt{40^{2}+20^{2}}=44.7 \mathrm{~cm}$. Award (M0)(A0)(M1) $(\boldsymbol{A 1})(\mathbf{f t})$, and (b) angle $\mathrm{OBP}=63.4^{\circ}\left(63.5^{\circ}\right)(\mathbf{M 1})(\boldsymbol{A 1})(\mathbf{f t})$.
5)
(a) $\mathrm{AG}=\sqrt{0.8^{2}+0.5^{2}}$
(M1)
$\boldsymbol{U P}$)
$\mathrm{AG}=0.943 \mathrm{~m}$
(A1)
(C2)
(b) $\mathrm{AF}=\sqrt{\mathrm{AG}^{2}+1.80^{2}}$
(M1)
UP) $\quad=2.03 \mathrm{~m}$

$$
(A 1)(\mathbf{f t})
$$

Note: Follow through from their answer to part (a).
(c) $\cos \mathrm{GAF}=\frac{0.943(39 \ldots)}{2.03(22 \ldots)}$

$$
\begin{equation*}
\mathrm{GA} \mathrm{~A} F=62.3^{\circ} \tag{M1}
\end{equation*}
$$

(A1)(ft)
(C2)
Notes: Award (M1) for substitution into correct trig ratio.
Accept alternative ratios which give 62.4° or 62.5°.
Follow through from their answers to parts (a) and (b).

3D Trig

6)

(a)

(b) $\tan 70=\frac{h}{5}$
$h=5 \tan 70=13.74$
$h=13.7 \mathrm{~cm}$
(c) (i) $\mathrm{EG}^{2}=5^{2}+13.7^{2}$ OR $5^{2}+(5 \tan 70)^{2}$ $\mathrm{EG}=14.6 \mathrm{~cm}$
(ii) $\mathrm{DEC}=2 \times \tan ^{-1}\left(\frac{5}{14.6}\right)$
$=37.8^{\circ}$
(d) Area $=10 \times 10+4 \times 0.5 \times 10 \times 14.619$

$$
=392 \mathrm{~cm}^{2}
$$

(e) Volume $=\frac{1}{3} \times 10 \times 10 \times 13.7$
$=457 \mathrm{~cm}^{3}\left(458 \mathrm{~cm}^{3}\right)$
[1 mark]
[2 marks]
(M1)
(A1)(G2)
(M1)
(A1)(ft)(G2)
(M1)
(A1)(ft)(G2)
(M1)
(A1)(G2)
(M1)
(A1)
($A G$)
[2 marks]
[2 marks]

3D Trig

7)

(a) (i) 60°
(A1)
(M1)(A1)
(A1)(ft)(G2)
[4 marks]

Note: Award (M1) for substitution into correct formula, (A1) for correct values. Accept alternative correct methods.
(b) Surface Area $=15.58 \times 2+23 \times 6 \times 3$
(M1)(M1)

Note: Award (M1) for two terms with 2 and 3 respectively, (M1) for 23×6 (138).
(UP) \quad Surface Area $=445 \mathrm{~cm}^{2}$
(c) weight $=1.5 \times 15.59 \times 23$
(A1)(ft)(G2) [3 marks]
(M1)(M1)

Note: Award (M1) for finding the volume, (M1) for multiplying their volume by 1.5 .
(UP)

$$
\text { weight }=538 \mathrm{~g}
$$

(A1)(ft)(G3) [3 marks]
(M1)(A1)
(d) $\quad \cos \alpha=\frac{4^{2}+6^{2}-7^{2}}{2 \times 4 \times 6}$

Note: Award (M1) for using cosine rule with values from the problem, (A1) for correct substitution.

$$
\begin{equation*}
\alpha=86.41 . . \tag{A1}
\end{equation*}
$$

$\alpha=86.4^{\circ}$
(AG) [3 marks]
Note: $86.41 \ldots$ must be seen for final (A1) to be awarded.
(e) $\quad l \times \frac{4 \times 6 \times \sin 86.4^{\circ}}{2} \times 1.5=500$
(M1)(A1(M1)

Notes: Award (M1) for finding an expression for the volume, (A1) for correct substitution, (M1) for multiplying the volume by 1.5 and equating to 500 , or for equating the volume to $\frac{500}{1.5}$.
If formula for volume is not correct but consistent with that in (c) award at $\operatorname{most}(\mathbf{M 1})(\boldsymbol{A 0})(\mathbf{f t})(\mathbf{M 1})(\boldsymbol{A 0})$.
(UP) $\quad l=27.8 \mathrm{~cm}$
(A1)(G3) [4 marks]
Total [17 marks]

