MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme S		Paper
	Cambridge IGCSE – October/November 2015	0606	13

Т

٦

Abbreviations

Г

Awrt	answers which round to
Cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1 (i)		B1	
(ii)		B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}} \text{ oe}$	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}$		
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0$ and $\frac{\pi}{6}$ (or 0 and 0.524)	A2/1/0	A2 for 3 solutions and no extras in the range A1 for 2 solutions
	$x = \frac{\pi}{3}$ (or 1.05)		A0 for one solution or no solutions

	Page 3	Mark Scheme		Syllabus Paper		
		Cambridge IGCSE – October/Nove	15 0606 13			
3	(a)	$\begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix}$	B2,1,0	B2 for 6 elements correct, B1 for 5 elements correct		
	(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B2,1,0	B2 for 4 correct elements in X^2 B1 for 3 correct elements in X^2		
		-24 = 6m or -8 = 2m giving m = -4	B1	For $m = -4$ using correct I		
		28 = 4m + n or $76 = -8m + nn = 44$	M1 A1	complete method to obtain <i>n</i>		
	(c)	$a^2 - 6 = 0$ so $a = \pm \sqrt{6}$	B2,1,0	B2 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$, with no incorrect statements seen or B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen or B1 for $a = \sqrt{6}$ and no incorrect working		
4	(i)	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$	B1	correct use of the area		
		$\frac{1}{2} \left(4\sqrt{3} + 1 \right) \times BC = \frac{47}{2}$ $BC = \frac{47}{\left(4\sqrt{3} + 1 \right)} \times \frac{\left(4\sqrt{3} - 1 \right)}{\left(4\sqrt{3} - 1 \right)}$ $BC = 4\sqrt{3} - 1$	M1 A1	correct rationalisation Dependent on all method being seen		
		Alternative method				
		$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$ $\left(4\sqrt{3}+1\right)\left(a\sqrt{3}+b\right) = 47$	B1			
		Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations	M1			
		$BC = 4\sqrt{3-1}$	A1	Dependent on all method seen including solution of simultaneous equations		
	(ii)	$ (4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2 $ = $(48+8\sqrt{3}+1) + (48-8\sqrt{3}+1)$				
		$= \left(48 + 8\sqrt{3} + 1\right) + \left(48 - 8\sqrt{3} + 1\right)$	B1FT	6 correct FT terms seen		
		$AC^2 = 98$ $AC = 7\sqrt{2}$ or $p = 7$	B1cao	98 and $7\sqrt{2}$ or 98 and $p = 7$		

Page 4			Syllabus Paper
	Cambridge IGCSE – October/Nove	ember 20	15 0606 13
5	When $x = \frac{\pi}{4}$, $y = 2$	B1	<i>y</i> = 2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\mathrm{sec}^2 x$	B1	$5 \sec^2 x$
	When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$	B1	10 from differentiation
	Equation of normal $y - 2 = -\frac{1}{10} \left(x - \frac{\pi}{4} \right)$	M1	$y - their 2 = -\frac{1}{their 10} \left(x - \frac{\pi}{4} \right)$
	$10y + x - 20 - \frac{\pi}{4} = 0$ or $10y + x - 20.8 = 0$ oe	A1	allow unsimplified
6 (i)	-4 -2 2 4 6 8	B1 B1 B1	shape intercepts on <i>x</i> -axis intercept on <i>y</i> -axis for a curve with a maximum and two arms
(ii)	(2,16)	M1 A1	(2, ±16) seen or (2, k) where $k > 0$ (2, 16) or $x = 2$ and $y = 16$ only
(iii)	k = 0	B1	
	<i>k</i> > 16	B1	

[Page 5					Paper
		Cambridge IGCSE – October/Nove	ember 20	15	0606	13
7		$\frac{dy}{dx} = 2\sin 3x (+c)$ $4\sqrt{3} = 2\frac{\sqrt{3}}{2} + c$	B1 M1	$2\sin 3x$ finding constant using $\frac{dy}{dx} = k\sin 3x + c \text{ making use of}$ $\frac{dy}{dx} = 4\sqrt{3} \text{ and } x = \frac{\pi}{9}$		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with a	$c = 5.20 \text{ or } \sqrt{2}$	7
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integration of <i>their</i> $k \sin 3x$		
		$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding constant <i>d</i> for $k \cos 3x + cx + d$		
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow y = -0.667 co or better	$\cos 3x + 5.20x$	-0.577π
8	(a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$				
		$k = \frac{1}{4}$	B1			
		p = 112 $q = 28$	B1FT B1FT	FT 1792 mu FT 1792 mu		
	(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$	M1	correct term seen		
		$84x^6\left(-\frac{8}{x^6}\right)$ leading to -672	DM1 A1	Term selecte evaluated	d and 2 ³ and	${}^{9}C_{3}$ correctly

	Page 6 Mark Scheme		Syllabus	Paper					
			Cambridge IGCSE – October/Nove	15	0606	13			
9	(a) (i	· ·	Number of arrangements with Maths books as one item = $4!$ or $4 \times 3!$	M1	4!(×2) or 4×	$4 \times 3! (\times 2)$ oe			
			or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$		2!×3!(×4) o	or $2 \times 3! (\times 4)$) ое		
			$2 \times 4! \text{ or } 2 \times 4 \times 3! \text{ or } 4 \times 2 \times 3! = 48$	A1	A1 for 48				
	(ii	i)	$5! - 48 \text{ or } 6 \times 2 \times 3!$	M1	5! - their answer to (i) or for $6 \times 2 \times 3$				
			72	A1					
	(b) (i	i)	3003	B1					
	(ii	i)	3003 - 6 - 135	M1	their answer	to (i) -6^{-6}	$C_4 \times 9$		
			2862	B1 A1	135 subtracted				
			or $2M \ 3W = 720$ $3M \ 2W = 1260$ $4M \ 1W = 756$	M1		ed by workir	using 4 cases, ng. Must have		
			5M = 126 2862	B1 A1	any 3 correct				
			2862	AI					

	Page 7				Syllabus	Paper	
		Cambridge IGCSE – October/November 2015				13	
10	(i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $\sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$	M1	correct cosine rule statement or corr statement for $sin \frac{ABC}{2}$ or equating a oe			
		or $ABC = \pi - \sin^{-1} \frac{10\sqrt{11}}{36}$					
		ABC = 1.9702	A1	1.9702 or be	tter		
	(ii)	XY = 2 Arc length $6\left(\frac{\pi - 1.970}{2}\right)$ oe	B1 B1	for <i>XY</i> (may be implied by later we allow on diagram) correct arc length (unsimplified)			
		Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$ = 9.03	M1 A1	their $2 + 2 \times$	$6 \times their$ and	gle C	
	(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$	M1 M1	of AC , or (Δs	<i>M</i> where <i>M</i> is <i>ABY</i> and <i>BX</i>	s the midpoint (Y) or ΔABC	
		= 4.50 or 4.51 or better	A1	Answers to 3	sf or better		

Page 8	Mark Scheme		Syllabus Paper		
	Cambridge IGCSE – October/No				
11	$x^{2} - 2x - 3 = 0$ or $y^{2} - 6y + 5 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable		
	leading to (3, 5) and (-1, 1)	to (3, 5) and (-1, 1) A1,A1 A1 for each quadratic equ			
	Midpoint (1, 3)	B1cao	midpoint		
	(Gradient - 1) Perpendicular bisector $y = 4 - x$ Meets the curve again if $x^{2} + 10x - 15 = 0$ or $y^{2} - 18y + 41 = 0$	M1 M1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i> midpoint substitution and simplification to obtain a three term quadratic equation in one variable.		
	leading to $x = -5 \pm 2\sqrt{10}$, $y = 9 \mp 2\sqrt{10}$	A1,A1	A1 for each 'pair'		
	$CD^{2} = (4\sqrt{10})^{2} + (4\sqrt{10})^{2}$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$		
	$CD = 8\sqrt{5}$	A1	must be seen if not using correct coordinates. A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all correct so far.		

	Page 9	Mark Scheme			Syllabus	Paper		
		Cambridge IGCSE – October/Nove	vember 2015 0606 13					
12	(a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	expressing 4 9^{2y-x} , 27^{y-4} a	Appressing 4^{x+y} , 128 as powers of 2 a 2^{y-x} , 27^{y-4} as powers of 3			
		2x - 1 + 2(x + y) = 7 oe 2(2y - x) = 3(y - 4) oe leading to $x = 4$, $y = -4$	A1 A1 A1		ation from con ation from cor			
		Example of Alternative method Method mark as above 2x - 1 + 2(x + y) = 7	M1 A1	As before One of the co	orrect equatio	ns in x and y		
		leading to $y = \frac{(8-4x)}{2}$ Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$						
		Leading to $2\left(\frac{2(8-4x)}{2}-x\right) = 3\left(\frac{(8-4x)}{2}-4\right)$ Leading to $x = 4$ and $y = -4$	A1 A1	Correct, unst only Both answer		ation in <i>x</i> or <i>y</i>		
	(b)	$(2(5^{z})-1)(5^{z}+1)=0$ leading to $2.5^{z}=1$ $(5^{z}=-1)$	M1 A1	solution of q correct solut	•			
		$5^{z} = 0.5$	DM1	correct attem <i>k</i> is positive	npt to solve 2.	$5^z = k$, where		
		$z = \frac{\log 0.5}{\log 5}$ or $z = -0.431$ or better	A1	must have or	ne solution or	ıly		