MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

F	Page 2	Mark Scheme	Syllabus	Paper		
		Cambridge IGCSE – October/Noven	nber 2014	I	0606	12
1		$\frac{dy}{dx} = 2x - \frac{16}{x^2}$ When $\frac{dy}{dx} = 0$,	M1 A1 DM1	all correct for equatin attempt to	ng $\frac{dy}{dx}$ to zero solve for <i>x</i> .	and an
		x = 2, y = 12	A1	AI for bo	th, but no extr	a solutions
2	(a)	2	B1	for correct	t shape	
			B1		alue of 2, star ing at (180°,	
		-4 ₁	B1	for min va	lue of –4	
	(b) (i)	4	B 1	must be p	ositive	
	(ii)	$60^{\circ} \text{ or } \frac{\pi}{3} \text{ or } 1.05 \text{ rad}$	B1			
3	(i)	$y = 4(x+3)^{\frac{1}{2}}(+c)$	M1, A1	M1 for $(x$	$(+3)^{\frac{1}{2}}$, A1 for	$4(x+3)^{\frac{1}{2}}$
		$10 = 4 \left(9^{\frac{1}{2}}\right) + c$ $c = -2$	M1	for a corre	ect attempt to rom an attemp	find <i>c</i> , but
		c = -2 y = 4(x + 3) ^{1/2} - 2 6 = 4(x + 3) ^{1/2} - 2	A1	Allow A1	for $c = -2$	
	(ii)	$6 = 4(x+3)^{\frac{1}{2}} - 2$ x = 1	A1 ft		stitution into <i>t</i> to obtain <i>x</i> ; m	

F	Page 3	Mark Scheme		Syllabus Paper		
		Cambridge IGCSE – October/Noven	nber 2014	0606 12		
4	(i)	$5y^2 - 7y + 2 = 0$	B1, B1	B1 for 5, B1 for –7		
	(ii)	(5y-2)(y-1) = 0	M1	for solution of quadratic equation from (i)		
		$y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$	M1	for use of logarithms to solve equation of the type $5^x = k$		
		x = -0.569	A1	must be evaluated to 3sf or better		
		y = 1, x = 0	B 1			
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x}$	M1	for attempt to differentiate		
		When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	B 1	for $y = 1$		
		Tangent: $y - 1 = 2(x - 1)$	DM1	for attempt to find equation of tangent		
		(y=2x-1)	A1	allow equation unsimplified		
	(ii)	Mid-point (5, 9)	B 1	for midpoint from given coordinates		
		9 = 2(5) - 1	B 1	for checking the mid-point lies on tangent		
		Alternative Method: Tangent equation $y = 2x - 1$				
		Equation of line joining (-2, 16) and (12, 2) y = -x + 14				
		Solve simultaneously $x = 5, y = 9$	B 1	for a complete method to find the coordinates of the point of		
		Mid-point (5, 9)	B1	intersection for midpoint from given coordinates		
6	(i)	$(2+px)^6 = 64+192px+240p^2x^2\dots$	B1	for 240 p^2 or 240 p^2x^2 or ${}^6C_2 \times 2^4 \times (px)^2$ or ${}^6C_2 \times 2^4 \times p^2$ or ${}^6C_2 \times 2^4 \times p^2x^2$		
		$240p^2 = 60$	M1	for equating <i>their</i> term in x^2 to 60		
		$p = \frac{1}{2}$	A1	and attempt to solve		
	(ii)	$(3-x)(64+192px+240p^2x^2)$	B1 ft	ft for 192 <i>p</i> , 96 or 192 × <i>their p</i>		
		Coefficient of x^2 is $180-192p$ = 84	M1 A1	for 180 – 192 <i>p</i>		

	Page 4	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/Noven	nber 2014	0606 12
7	(i)	$\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$	B1, B1	B1 for $\frac{1}{5ab}$, B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$
	(ii)	$\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$	M1	for post-multiplication by inverse matrix
		$= \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a} \\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$	DM1	for correct attempt at matrix multiplication, needs at least one term correct for their BA ⁻¹ (allow unsimplified)
		$= \begin{pmatrix} 0 & 1\\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$	A1 A1	for each correct pair of elements, must be simplified
8	(i)	$\overline{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}, \text{ at } P, \ x = -2 + \frac{1}{4}(12)$ so at $P, \ x = 1$	B1	for convincing argument for $x = 1$
		$y = 3 + \frac{1}{4}(16), y = 7$	B 1	for $y = 7$
	(ii)	Gradient of $AB = \frac{16}{12}$, so perp gradient $= -\frac{3}{4}$	M1	for finding gradient of perpendicular
		Perp line: $y - 7 = -\frac{3}{4}(x - 1)$	M1	for equation of perpendicular through their <i>P</i>
		(3x+4y=31)	A1	Allow unsimplified
	(iii)	$Q\left(0,\frac{31}{4}\right)$	B1 ft	ft on their perpendicular line, may be implied
			M1	for any valid method of finding the area of the correct triangle, allow use of <i>their Q</i> ; must be in the form
		Area $AQB = 12.5$	A1	(0,q).

Pa	ag	e	5

Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2014060612

9	(i)	$\log y = \log y$	ga + x le	og <i>b</i>				B1	for the statement, may be seen or
		x	2	2.5	3	3.5	4		implied in later work,
		lg y	1.27	1.47	1.67	1.87	2.07		
		lny	2 2.93	2.5 3.39	3 3.84	3.5 4.31	4 4.76		
		IIIy	2.75	5.59	5.01	1.51	1.70		
		logy						M1	for attempt to draw graph of x against log y
							x	A2,1,0	-1 each error in points plotted
	(ii)	Gradient = $\lg b = 0.4$		= 0.92				DM1	for attempt to find gradient and equate it to log <i>b</i> , dependent on M1
		b = 2.5 (al	low 2.4	to 2.6))			A1	in (i)
		Intercept = $\log a$ $\lg a = 0.47$ or $\ln a = 1.10$		DM1	for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with				
		a = 3 (allo	ow 2.8 t	o 3.2)				A1	<i>their</i> gradient and a point on the line, dependent on M1 in (i)
		Alternativ Simultane points that used.	ous equ	ations	•	-		DM1 DM1	for a pair of equations using points on the line, dependent on M1 in (i) for solution of these equations,
		2 (11	2 6 4	2.2)				A1	dependent on M1 in (i) A1 for each
		a = 3 (allowing b) (allowing b) (allowing b) (allowing b) (allowing b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)			AI A1	

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2014	0606	12

10	(a) (i)	360	B1	
	(ii)	60	B1	
	(iii)	36	B 1	
	(b) (i)	${}^{8}C_{5} \times {}^{12}C_{5}$ 56 × 792 = 44352	B1, B1	B1 for each, allow unevaluated with no extra terms
		56 × 792 = 44352	B 1	Final answer must be evaluated and from multiplication
	(ii)	4 places are accounted for Gender no longer 'important'	M1	for realising that 4 places are accounted or that gender is no longer important
		Need ${}^{16}C_6 = 8008$	A1	for 8008
		Alternative Method		
		$\binom{6}{6} \binom{6}{6} \binom{10}{6} + \binom{6}{6} \binom{5}{5} \binom{10}{6} \binom{6}{10} \binom{6}{6} \binom{5}{6} \binom{6}{6} \binom{6}{6} \binom{10}{6} \binom{6}{6} \binom{10}{6} \binom{6}{6} \binom{6}{6} \binom{10}{6} \binom{6}{6} \binom{6}{6} \binom{10}{6} \binom{6}{6} \binom{6}{6} \binom{10}{6} \binom{6}{6} $	M1	for at least 5 of the 7 cases, allow
		1 + 60 + 675 + 2400 + 3150 + 1512 + 210 = 8008	A1	unsimplified
11	(a)	$2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$ $\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$	M1	for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$, may be implied
		Leading to $\cos 3x = 0$, $3x = 90^{\circ}$, 270°	DM1	for attempt to solve $\cos 3x = 0$ correctly from correct factorisation
		$x = 30^\circ, 90^\circ$	A1	to obtain <i>x</i> A1 for both, no excess solutions in the range
		and $\sin 3x = \frac{1}{2}, \ 3x = 30^{\circ}, \ 150^{\circ}$	DM1	for attempt to solve $\sin 3x = \frac{1}{2}$
	(b)	$x = 10^{\circ}, 50^{\circ}$	A1	correctly to obtain <i>x</i> A1 for both, condone excess solutions
		$\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$ $y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$	M1	for dealing with $\sec\left(y+\frac{\pi}{2}\right)$ correctly
			DM1	for correct order of operations, must not mix degrees and radians
		so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)	A1, A1	
<u> </u>		l	I	1

Page 7	Mark Scheme	Syllabus	Paper	
	Cambridge IGCSE – October/November 2014	0606	12	

12	(i)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1	
	(ii)	$\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$	B1	
	(iii)	$\overrightarrow{OR} = \mathbf{a} + \frac{1}{3} (\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3} (\lambda \mathbf{b} - \mathbf{a})$	M1	for $\mathbf{a} + \frac{1}{3}$ their (i)
		$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1	Allow unsimplified
	(iv)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$	M1	for $\mathbf{b} + \frac{7}{8}$ their (ii)
		$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1	Allow unsimplified
		$\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$	M1	for equating (iii) and (iv) and then equating like vectors
		$\frac{2}{3} = \frac{7}{8}\mu, \mu = \frac{16}{21}$ Allow 0.762	A1	equating like vectors
		$\frac{1}{3}\lambda = \frac{1}{8}, \lambda = \frac{3}{8} \text{Allow 0.375}$	A1	