CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

1	(x+6)(x-1)	M1	Attempt to solve a three term quadratic
	Critical values –6 and 1	A1	quadratic
	-6 < x < 1	A1 [3]	Allow $x > -6$ AND $x < 1$ but not OR or a comma. Mark final answer.
2	$\left(4\sqrt{5} - 2\right)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error,
	Multiply top and bottom by $\sqrt{5} + 1$	M1	must be in the form $a + b\sqrt{5}$. Must be attempt to expand top and bottom.
	$17\sqrt{5} + 1$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$
	OR $(4\sqrt{5}-2)^2 = 80-16\sqrt{5}+4$ $(\sqrt{5}-1)(p\sqrt{5}+q)=5p-q+\sqrt{5}(q-p)$ Leading to $5p-q=84, q-p=-16$	M1 M1	
	Leading to $3p-q = 84, q-p = -10$ p = 17 q = 1	A1 A1	Must get to a pair of simultaneous equations for this mark
3 (i)	$\frac{\mathrm{d}y}{\mathrm{d}k} = k \left(\frac{1}{4}x - 5\right)^7$	M1	
	k = 2	A1 [2]	
(ii)	Use $\partial y = \frac{dy}{dx} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$^{\uparrow}$ on k needs both M marks
	-256 <i>p</i>	A1 [↑] [2]	♦ only for –128kp and must be evaluated
4 (i)	10	B1	
(ii)	-5	[1] B1	Not $\log_p 1 - 5$
(iii)	$\log_p XY = \log_p X + \log_p Y = 7$	[1] B1	Or $\log_{XY} p = \frac{1}{\log_p XY}$
			Do not allow just $\log_p X + \log_p Y = 7$
	$\frac{1}{7}$	B1√ [^] [2]	$ ^{\uparrow} $ on $\frac{1}{\log_p XY}$

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

5		x - 4y = 5 oe	B1	
		2x + 2y = 5 oe	B 1	
		Solve their linear simultaneous equations	M1	Each in two variables and not quadratic as far as $x =$ or $y =$
		x = 3 or $y = -0.5$	A1,A1\(^\)	quadratic as far as $x = \dots$ or $y = \dots$
		OR from log $0.602x - 2.408y = 3.01$ $0.954x + 0.954y = 2.386$	B1 B1	
		OR from ln 1.386x - 5.545y = 6.931 2.197x + 2.197y = 5.493 Final M1A1A1 follows as before	B1 B1	
6	(a) (i)	-8 or 20	B1	± 40 implies $\pm 2 \times 20$ or ± 160 hence B1
		$-160(x^3)$ isw	B1 [2]	OK if seen in expansion
	(ii)	$60(x^2)$	B1	Can be implied
		(i) $+\frac{1}{2}$ (their 60)	M1	
		$-130(x^3)$	A1 [3]	
	(b)	$16x^2 + 32x + 24 + \frac{8}{x} + \frac{1}{x^2}$ oe	B3,2,1,0	Terms must be evaluated (allow $24x^0$) B2 for 4 terms correct. B1 for 2 or 3 terms correct. ISW once expansion is seen.
7	(i)	$l = \frac{3500}{x^2}$	B1	allow $lx^2 = 3500$
		$L = 3 \times 4x + 2x + 2l$	B1	RHS 3 terms e.g. $12x + 2x + 2\left(\frac{3500}{x^2}\right)$
		Substitute for <i>l</i> and correctly reach $L = 14x + \frac{7000}{x^2}$	DB1ag [3]	or better Dependent on both previous B marks
	(ii)	$\frac{\mathrm{d}L}{\mathrm{d}x} = 14 - \frac{14000}{x^3}$	M1A1	M1 either power reduced by one A1 both terms correct
		Equate $\frac{dL}{dr}$ to 0 and solve	DM1	Must get $x^n =$
		x = 10 $L = 210$	A1	Both values
		$\frac{d^2 y}{dx^2} = \frac{42000}{x^4}$ and minimum stated	B1 [5]	Or use of gradient either side of turning point.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

(ii) Plot $\frac{y}{x}$ against x^2 with linear scales $x^2 - 4 - 16 - 36 - 64$ B1 A1 Least 3 correct points plotted and no incorrect points plotted and no incorrect points [least 2 correct points] (iii) Finds gradient (0.4) $a = 0.4 \pm 0.02$ $b = 3.2 \pm 0.4$ (iv) Read $\frac{y}{x} = 12.5$ Or substitute in formula 4.8 A1 12(vos $\alpha = 40$ 12(vos $\alpha = 48.4$ Solve for v or α $\alpha = 39.6$ $v = 5.23$ Method B Method B Method B Default and A	8	(i)	x^2	B1 [1]	Implied by axes or values in a table. May be seen in (ii)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(ii)	Plot $\frac{y}{x}$ against x^2 with linear scales		Must be linear scales
Second color Sec			**	B1	
$a = 0.4 \pm 0.02 \\ b = 3.2 \pm 0.4$ $A1 \\ B1 \\ (iv)$ Read $\frac{y}{x} = 12.5$ or substitute in formula 4.8 $A1 \\ 12 $ $A1 \\ A2 \\ A3 \\ A4 \\ A5 \\ A5 \\ A5 \\ A5 \\ A5 \\ A5 \\ A5$			$\frac{y}{x}$ 4.8 9.6 17.5 29		Line must be ruled and through at
(iv) Read $\frac{y}{x} = 12.5$ or substitute in formula 4.8 MI A1 A2 A3 A3 A4 A5 ar as $x^2 = +ve$ constant A1 A1 A2 A3 A4 A5 ar as $x^2 = +ve$ constant A1 A1 A1 A2 A3 A3 A4 A4 A5 ar as $x^2 = +ve$ constant A1 A1 A1 A1 A1 A2 A3 A3 A4 A4 A4 A5 ar as $x^2 = +ve$ constant A5 A6 A7 A7 A7 A8 A9 A1 A1 A1 A1 A1 A1 A1 A1 A1		(iii)		M1	
or substitute in formula 4.8 A1 4.8 A1 [2] 9 Method A Takes components $12v \sin \alpha = 40$ $12(v \cos \alpha + 1.8) = 70$ MIA1 $12v \cos \alpha = 48.4$ Solve for v or α $\alpha = 39.6$ $v = 5.23$ Method B Method B Takes components $x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ $y = 70 - 21.6 = 48.4$ $y = \frac{D}{12}$ $y = \frac{D}{12}$ $y = 5.23$ Mian MIA1 A1 A1 A1 A1 A1 A1 A1 A1 A1				B1	equation. Values read from graph
9 Method A Takes components 12 $v \sin \alpha = 40$ MI A1 12 $v \cos \alpha = 48.4$ MI A1 A1 DM1 Solve for v or α A1 $\alpha = 39.6$ Method B $x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ B1 $D^2 = 40^2 + 48.4^2 (= 3942.56)$ MI $D = 62.8$ A1 $V = \frac{D}{12}$ DM1 $V = 5.23$ A1 5.23 or better $D = \frac{40}{48.4}$ M1 A1 Allow 0.691 radians		(iv)	Read $\frac{y}{x} = 12.5$	M1	Obtaining (x^2) = 22 to 24 from graph
9 Method A Takes components $12v \sin \alpha = 40$ $12(v \cos \alpha + 1.8) = 70$ $12v \cos \alpha = 48.4$ Solve for v or α $\alpha = 39.6$ $v = 5.23$ Method B Method B $x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ $D = 62.8$ $V = 5.23$ Min Dimits $V = 5.23$ Bin Dimits $V = 5.23$ Bin Dimits $V = \frac{D}{12}$ $V = 5.23$ $V = 5.23$ $V = 5.23$ $V = \frac{D}{12}$ $V = 5.23$ $V = \frac{40}{48.4}$ $V =$			or substitute in formula		As far as $x^2 = +$ ve constant
Takes components $12v \sin \alpha = 40$			4.8		4.7 to 4.9 ignore –4.8 or 0
12 $v \sin \alpha = 40$ 12 $(v \cos \alpha + 1.8) = 70$ 12 $v \cos \alpha = 48.4$ Solve for v or α $\alpha = 39.6$ $v = 5.23$ Method B $x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ $D = 62.8$ $V = \frac{D}{12}$ $V = 5.23$ $\tan \alpha = \frac{40}{48.4}$ $\alpha = 39.6^{\circ}$ A1 M1A1 DM1 A1	9				
12($v\cos \alpha + 1.8$) = 70 12 $v\cos \alpha = 48.4$ Solve for v or α $\alpha = 39.6$ v = 5.23 Method B $x = 1.8 \times 12 = 21.6$ y = 70 - 21.6 = 48.4 D = 62.8 $V = \frac{D}{12}$ V = 5.23 $\tan \alpha = \frac{40}{48.4}$ $\alpha = 39.6^{\circ}$ M1A1 DM1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A					
Solve for v or α $\alpha = 39.6$ $v = 5.23$ Method B $x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ $D = 62.8$					
$\alpha = 39.6 \\ v = 5.23$ Method B $x = 1.8 \times 12 = 21.6 \\ y = 70 - 21.6 = 48.4$ $D^2 = 40^2 + 48.4^2 (= 3942.56)$ $D = 62.8$ $V = \frac{D}{12}$ $V = 5.23$ $\tan \alpha = \frac{40}{48.4}$ $\alpha = 39.6^{\circ}$ A1 Allow 0.691 radians B1					
Method B $x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ $D = 40^2 + 48.4^2 (= 3942.56)$ $D = 62.8$ $D = 62.8$ $D = 5.23$ $D = 10.8$					Allow 0.691 radians
$x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ $D^{2} = 40^{2} + 48.4^{2} (= 3942.56)$ $D = 62.8$ $V = \frac{D}{12}$ $V = 5.23$ $\tan \alpha = \frac{40}{48.4}$ $\alpha = 39.6^{\circ}$ B1					Tillow 0.071 fadialis
$x = 1.8 \times 12 = 21.6$ $y = 70 - 21.6 = 48.4$ $D^{2} = 40^{2} + 48.4^{2} (= 3942.56)$ $D = 62.8$ $V = \frac{D}{12}$ $V = 5.23$ $\tan \alpha = \frac{40}{48.4}$ $\alpha = 39.6^{\circ}$ B1 B1 B1 B1 DM1 A1 S.23 or better M1 A1 Allow 0.691 radians					
$x = 1.8 \times 12 = 21.6$ y = 70 - 21.6 = 48.4 $D^2 = 40^2 + 48.4^2 (= 3942.56)$ D = 62.8 $V = \frac{D}{12}$ V = 5.23 $\tan \alpha = \frac{40}{48.4}$ $\alpha = 39.6^{\circ}$ B1 B1 B1 B1 DM1 A1			D 40		
$D^2 = 40^2 + 48.4^2 (= 3942.56)$ M1 D = 62.8 A1 $V = \frac{D}{12}$ DM1 V = 5.23 A1 5.23 or better $\tan \alpha = \frac{40}{48.4}$ M1 $\alpha = 39.6^{\circ}$ A1 Allow 0.691 radians			$x = 1.8 \times 12 = 21.6$		
$D = 62.8$ A1 $V = \frac{D}{12}$ DM1 $V = 5.23$ A1 $\tan \alpha = \frac{40}{48.4}$ M1 $\alpha = 39.6^{\circ}$ A1 Allow 0.691 radians			•		
$V = \frac{D}{12}$ DM1 V = 5.23 A1 5.23 or better $\tan \alpha = \frac{40}{48.4}$ M1 $\alpha = 39.6^{\circ}$ A1 Allow 0.691 radians			· · · · · · · · · · · · · · · · · · ·		
$\tan \alpha = \frac{40}{48.4}$ $\alpha = 39.6^{\circ}$ M1 Allow 0.691 radians					
$\tan \alpha = \frac{1}{48.4}$ $\alpha = 39.6^{\circ}$ M1 Allow 0.691 radians			V = 5.23	A1	5.23 or better
			$\tan \alpha = \frac{40}{48.4}$	M1	
			$\alpha = 39.6^{\circ}$		Allow 0.691 radians

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

Method C		
V B 40		
$ \begin{array}{c} $		
$z = \sqrt{40^2 + 70^2} \left(= 80.6 \right)$	B1	
$v = \frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$	B1	
$\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74)$ oe	B1	Or $\tan(90-\delta) = \frac{7}{4}$
$V^{2} = 1.8^{2} + 6.72^{2} - 2 \times 1.8 \times 6.72 \cos 29.74$ $V = 5.23$	M1 A1	
$\frac{\sin \beta}{1}.8 = \frac{\sin 29.74}{5}.23$	M1	
$\beta = 9.8(3) \text{ or } 9.8(2)$	A1	Allow 0.172 radians
$\alpha = 29.74 + \beta = 39.6$	A1 [8]	Allow 0.691 radians
Method D		
z B 40		
21.6	B1	
$z = \sqrt{40^2 + 70^2} \left(= 80.6 \right)$	B1	
$x = 1.8 \times 12 = 21.6$	B1	
$\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74)$ oe	M1 A1	This method has extra steps so note at
$D^{2} = 21.6^{2} + 80.6^{2} - 2.21.6.80.6 \cos 29.74$ $V = (62.8/12) = 5.23$		this point the M mark is for an equation in D but the A mark is for a value of V.
	M1	
$\frac{\sin \beta}{21}.6 = \frac{\sin 29.74}{62}.8$		
$\beta = 9.8(3)$ or $9.8(2)$	A1	Allow 0.172 radians
$\alpha = 29.74 + \beta = 39.6$	A1 [8]	Allow 0.691 radians

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

10	(i)	$AB^{2} = 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ 15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$ Use $s = r\theta (= 58.6)$ 74.1	M1 A1 B1 M1 A1 [5]	$AB = 2 \times 12 \sin 0.7$ May be implied May be implied 12×4.9 or better oe
	(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or $\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$ (Triangle) $= \frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1 M1	May be implied.
		Area of major sector + Area of triangle 422 or 423	M1 A1 [4]	May be implied
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}e^{\frac{1}{3}x}$	B1	
		$m = \frac{1}{3}e^3$	M1	For insertion of $x = 9$ into their $\frac{dy}{dx}$. 6.7 or better if correct.
		$y - e^3 = \frac{1}{3}e^3(x-9)$	DM1	Using their evaluated m to find eqn $y = 6.7x - 40.2$ or better if correct.
		At Q y = 0, x = 6	A1 [4]	Accept value that rounds to 6.0 to 2sf
	(ii)	Area triangle 1.5e ³ or 30.1 $\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x}$ oe	B1	
		Uses limits of 0 and 9 in integrated function.	B1 M1	± must see both values inserted if incorrect answer
		$3e^3 - 3$ or 57.3 Area under curve subtract area of triangle $1.5e^3 - 3$ or 27.1	A1 M1 A1	Condone 27.2 if obtained from
			[6]	57.3 – 30.1.

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	22

12	(a)	$cosecx = \frac{1}{\sin x}$ inserted into equation $\tan x = -\frac{2}{7}$	B1 DB1	
		164.1 344.1	B1 B1√ [^]	One correct value. on $180 + (164.1)$ Must come from $tanx =$ Condone 164 and 344 Deduct 1 mark for extras in range
	(b)	(2y-1) = 0.79or 2.34 Find y using radians 0.898 (or 0.9 or 0.90) 1.67, 4.04 and $4.81(45)$	B1 M1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45.6° Add 1 then divide by 2 on a correct angle One correct value Another correct value Final two values Deduct 1 mark for extras in range