MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0606	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	e 3 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011	0606	21

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0606	21

1 6.5 H -4 MI MI 2 Eliminates y MI x ² + 6x + k - c (-0) MI MI Uses b ² = 4ac or completes square MI k = c + 9 MI Substitute in both equations and equate MI k = c + 9 MI 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})^2}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3}) \cos \theta$ MI (2 + $\sqrt{3})^2 = 7 + 4\sqrt{3}$ BI $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3}) \cos \theta$ MI (1 + $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3}) \cos \theta$ MI 4 (i) $\frac{kx}{(x^2 + 3)^2}$ MI $-\frac{4}{2} + \frac{3\sqrt{3}}{2}$ oc MI MI 6.5 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ MI 0.5 (iii) 6 $\frac{1}{x^2 + 3}$ MI 0.5 (i) (ii) h BI (iii) 6 6 $2(x^2 - 1) + 3$ MI 0.5 MI MI MI MI (iii) h^2 or hh BI					
-4 A1 2 Eliminates y $x^2 + 6x + k - c (= 0)$ Uses $b^2 = 4ac$ or completes square $k = c + 9$ M1 A1 M1 A1 OR $\frac{dy}{dx} = 2x + 9$ Equate to 3 and solve for x (x = -3) Substitute in both equations and equate $k = c + 9$ B1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})^2}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 M1 M1 M1 $k = c + 9$ 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ B1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ Multiply top and bottom by $2 - \sqrt{3}$ $\frac{-4}{2} + \frac{3\sqrt{3}}{2}$ oe M1 4 (i) $\frac{kx}{(x^2 + 3)^2}$ $k = -2$ M1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ $k = -2$ M1 0.5 A1 M1 (iii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ $k = -2 M1 (iii) \frac{6}{(-2)} \times (-1) + 33^3 M1 0.5 A1 $	1				
2 Eliminates y x ² + 6x + k - c (= 0) Uses b ² = 4ac or completes square k = c + 9 M1 A1 OR $\frac{dy}{dx} = 2x + 9$ Equate to 3 and solve for x (x = -3) Substitute in both equations and equate k = c + 9 B1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 4 (i) $\frac{kx}{(x^2 + 3)^2}$ k = -2 M1 4 (i) $\frac{kx}{(x^2 + 3)^2}$ k = -2 M1 5 (a) f(15) evaluated or fg(x) = 2(x^2 - 1) + 3 33 M1					
$\begin{array}{cccc} x^{2} + 6x + k^{2} - c (= 0) & \text{A1} \\ \text{Uses } b^{2} = 4ac \text{ or completes square} & \text{A1} \\ M1 \\ k = c + 9 & \text{A1} \\ \hline \mathbf{OR} & & \\ \frac{dy}{dx} = 2x + 9 & \text{B1} \\ \text{Equate to 3 and solve for } x (x = -3) & \text{B1} \\ \text{Equate to 3 and solve for } x (x = -3) & \text{M1} \\ \text{Substitute in both equations and equate} & \text{M1} \\ \hline 3 & \cos \theta = \frac{4 + \left(2 + \sqrt{3}\right)^{2} - 9}{4\left(2 + \sqrt{3}\right)} & \text{or } 9 = 4 + \left(2 + \sqrt{3}\right)^{2} - 4\left(2 + \sqrt{3}\right)\cos \theta & \text{M1} \\ \left(2 + \sqrt{3}\right)^{2} = 7 + 4\sqrt{3} & \text{B1} \\ \frac{2 + 4\sqrt{3}}{4\left(2 + \sqrt{3}\right)} & \text{A1} \\ \frac{2 + 4\sqrt{3}}{4\left(2 + \sqrt{3}\right)} & \text{A1} \\ \frac{-4}{4} + \frac{3\sqrt{3}}{2} & \text{oc} & \text{A1} \\ \hline 4 & (\mathbf{i}) & \frac{kx}{\left(x^{2} + 3\right)^{2}} & \text{A2} \\ k = -2 & \text{A1} \\ \hline \mathbf{i} & \frac{6}{(-2)} \times \frac{1}{x^{2} + 3} & \text{M1} \\ 0.5 & \text{A1} \\ \hline 5 & (\mathbf{a}) & f(15) \text{ evaluated or } fg(x) = 2(x^{2} - 1) + 3 \\ 33 & \text{(b)} & (\mathbf{i}) & \text{kh} & \text{B1} \\ \end{array}$			-4	AI	[3]
$x^2 + 6x + k^2 - c (= 0)$ Uses $b^2 = 4ac$ or completes square k = c + 9 A1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	2		Fliminates v	M1	[3]
Uses $b^2 = 4ac$ or completes square M1 $k = c + 9$ A1 OR $\frac{dy}{dx} = 2x + 9$ Equate to 3 and solve for $x (x = -3)$ B1 Substitute in both equations and equate M1 $k = c + 9$ A1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ B1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ A1 Multiply top and bottom by $2 - \sqrt{3}$ M1 $\frac{-4}{2} + \frac{3\sqrt{3}}{2}$ oe A1 4 (i) $\frac{kx}{(x^2 + 3)^2}$ M1 $k = -2$ A1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 0.5 A1 5 (a) f(15) evaluated or fg(x) = 2(x^2 - 1) + 3 M1 0.1 M1 M1 A1 (b) (i) kh B1 B1	-				
$k = c + 9$ A1 OR $\frac{dy}{dx} = 2x + 9$ B1 Equate to 3 and solve for $x (x = -3)$ Substitute in both equations and equate M1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})^2}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ B1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ M1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ M1 $\frac{4 + (3) - \frac{kx}{x^2 + 3}}{\frac{1}{2} - 9}$ M1 4 (i) $\frac{kx}{(x^2 + 3)^2}$ M1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 0.5 M1 M1 5 (a) f(15) evaluated or fg(x) = 2(x^2 - 1) + 3 M1 (b) (i) kh B1			Uses $b^2 = 4ac$ or completes square		
OR $\frac{dy}{dx} = 2x + 9$ B1 Equate to 3 and solve for $x (x = -3)$ M1 Substitute in both equations and equate M1 $k = c + 9$ M1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ B1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ M1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ M1 $\frac{4 + (i)}{4(2 + \sqrt{3})}$ $\frac{kx}{4(2 + \sqrt{3})}$ M1 $\frac{4 + (i)}{4(2 + \sqrt{3})}$ $\frac{kx}{4(2 + \sqrt{3})}$ M1 $\frac{4 + (i)}{4(2 + \sqrt{3})}$ $\frac{kx}{4(2 + \sqrt{3})}$ M1 $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}^2$ M1 M1 $k = -2$ M1 M1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 0.5 M1 M1 0.5 M1 M1 0.5 M1 M1 (i) kh M1 b (i) kh M1					
OR $\frac{dy}{dx} = 2x + 9$ B1 Equate to 3 and solve for $x (x = -3)$ M1 Substitute in both equations and equate M1 $k = c + 9$ M1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ B1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ M1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ M1 $\frac{4 + (i)}{4(2 + \sqrt{3})}$ $\frac{kx}{4(2 + \sqrt{3})}$ M1 $\frac{4 + (i)}{4(2 + \sqrt{3})}$ $\frac{kx}{4(2 + \sqrt{3})}$ M1 $\frac{4 + (i)}{4(2 + \sqrt{3})}$ $\frac{kx}{4(2 + \sqrt{3})}$ M1 $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}^2$ M1 M1 $k = -2$ M1 M1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 0.5 M1 M1 0.5 M1 M1 0.5 M1 M1 (i) kh M1 b (i) kh M1					[4]
a a a b a		OR			
a a a b a			$\frac{dy}{dt} = 2x + 9$		
Substitute in both equations and equate k = c + 9 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})} \text{ or } 9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ Multiply top and bottom by $2 - \sqrt{3}$ $-\frac{4}{2} + \frac{3\sqrt{3}}{2}$ oe 4 (i) $\frac{kx}{(x^2 + 3)^2}$ k = -2 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ Correct use of limits in $\frac{C}{x^2 + 3}$ 0.5 5 (a) f(15) evaluated or fg(x) = 2(x^2 - 1) + 3 (b) (i) kh M1 M1 M1 M1 M1 M1 M1 M			$\frac{dx}{dx} = 2x + 9$	B1	
k = c + 9 A1 3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ M1 $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ B1 $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ A1 Multiply top and bottom by $2 - \sqrt{3}$ M1 $\frac{-4}{2} + \frac{3\sqrt{3}}{2}$ oc M1 4 (i) $\frac{kx}{(x^2 + 3)^2}$ M1 k = -2 M1 M1 Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 M1 5 (a) f(15) evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 (b) (i) kh B1			Equate to 3 and solve for $x (x = -3)$	M1	
3 $\cos \theta = \frac{4 + (2 + \sqrt{3})^2 - 9}{4(2 + \sqrt{3})}$ or $9 = 4 + (2 + \sqrt{3})^2 - 4(2 + \sqrt{3})\cos \theta$ $(2 + \sqrt{3})^2 = 7 + 4\sqrt{3}$ $\frac{2 + 4\sqrt{3}}{4(2 + \sqrt{3})}$ Multiply top and bottom by $2 - \sqrt{3}$ $\frac{-4}{2} + \frac{3\sqrt{3}}{2}$ oe 4 (i) $\frac{kx}{(x^2 + 3)^2}$ k = -2 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ Correct use of limits in $\frac{C}{x^2 + 3}$ 0.5 5 (a) f(15) evaluated or fg(x) = 2(x^2 - 1) + 3 (b) (i) kh B1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M					
$ \begin{pmatrix} (2+\sqrt{3})^2 = 7+4\sqrt{3} \\ \frac{2+4\sqrt{3}}{4(2+\sqrt{3})} \\ Multiply top and bottom by 2 - \sqrt{3} \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} oe \\ \begin{pmatrix} M1 \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} \\ e^{-2} \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ \frac{4 (i) \frac{kx}{(x^2+3)^2} \\ k = -2 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $			k = c + 9	A1	
$ \begin{pmatrix} (2+\sqrt{3})^2 = 7+4\sqrt{3} \\ \frac{2+4\sqrt{3}}{4(2+\sqrt{3})} \\ Multiply top and bottom by 2 - \sqrt{3} \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} oe \\ \begin{pmatrix} M1 \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} \\ e^{-2} \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ \frac{4 (i) \frac{kx}{(x^2+3)^2} \\ k = -2 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $					
$ \begin{pmatrix} (2+\sqrt{3})^2 = 7+4\sqrt{3} \\ \frac{2+4\sqrt{3}}{4(2+\sqrt{3})} \\ Multiply top and bottom by 2 - \sqrt{3} \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} oe \\ \begin{pmatrix} M1 \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} \\ e^{-2} \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ (b) (i) kh \\ \end{pmatrix} $ $ \begin{pmatrix} B1 \\ A1 \\ M1 \\ M$	2		$4 + (2 + \sqrt{3})^2 - 9$ or $0 + (2 + \sqrt{2})^2 - 4(2 + \sqrt{2}) \cos \theta$	M1	
$ \begin{pmatrix} (2+\sqrt{3})^2 = 7+4\sqrt{3} \\ \frac{2+4\sqrt{3}}{4(2+\sqrt{3})} \\ Multiply top and bottom by 2 - \sqrt{3} \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} oe \\ \begin{pmatrix} M1 \\ \frac{-4}{2} + \frac{3\sqrt{3}}{2} \\ e^{-2} \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ \frac{4 (i) \frac{kx}{(x^2+3)^2} \\ k = -2 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $ $ \begin{pmatrix} M1 \\ A1 \\ M1 \\ A1 \\ \end{pmatrix} $	3		$\cos\theta = \frac{1}{4(2+\sqrt{3})}$ or $9 = 4 + (2+\sqrt{3}) - 4(2+\sqrt{3})\cos\theta$		
Multiply top and bottom by $2 - \sqrt{3}$ M1 $-\frac{4}{2} + \frac{3\sqrt{3}}{2}$ oe A1 4 (i) $\frac{kx}{(x^2+3)^2}$ M1 $k = -2$ M1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2+3}$ M1 Correct use of limits in $\frac{C}{x^2+3}$ M1 0.5 A1 5 (a) f(15) evaluated or fg(x) = 2(x^2-1) + 3 M1 (b) (i) kh B1					
Multiply top and bottom by $2 - \sqrt{3}$ M1 $-\frac{4}{2} + \frac{3\sqrt{3}}{2}$ oe A1 4 (i) $\frac{kx}{(x^2+3)^2}$ M1 $k = -2$ M1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2+3}$ M1 Correct use of limits in $\frac{C}{x^2+3}$ M1 0.5 A1 5 (a) f(15) evaluated or fg(x) = 2(x^2-1) + 3 M1 (b) (i) kh B1			$(2+\sqrt{3}) = 7+4\sqrt{3}$	B1	
Multiply top and bottom by $2 - \sqrt{3}$ M1 $-\frac{4}{2} + \frac{3\sqrt{3}}{2}$ oe A1 4 (i) $\frac{kx}{(x^2+3)^2}$ M1 $k = -2$ A1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2+3}$ M1 0.5 M1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2-1) + 3$ M1 $f(1)$ k B1			$2+4\sqrt{3}$	A1	
Multiply top and bottom by $2 - \sqrt{3}$ M1 $-\frac{4}{2} + \frac{3\sqrt{3}}{2}$ oe A1 4 (i) $\frac{kx}{(x^2+3)^2}$ M1 $k = -2$ M1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2+3}$ M1 Correct use of limits in $\frac{C}{x^2+3}$ M1 0.5 A1 5 (a) f(15) evaluated or fg(x) = 2(x^2-1) + 3 M1 (b) (i) kh B1			$\overline{4(2+\sqrt{3})}$		
$\frac{-4}{2} + \frac{3\sqrt{3}}{2} \text{ oe}$ A1 $\frac{4 (i) \frac{kx}{(x^2 + 3)^2}}{k = -2}$ M1 $(ii) \frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 $\frac{5 (a) f(15) \text{ evaluated or } fg(x) = 2(x^2 - 1) + 3$ A1 $(b) (i) kh$ B1				M1	
4 (i) $\frac{kx}{(x^2+3)^2}$ k = -2 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2+3}$ Correct use of limits in $\frac{C}{x^2+3}$ 0.5 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2-1) + 3$ (b) (i) kh B1					
4 (i) $\frac{kx}{(x^2+3)^2}$ k = -2 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2+3}$ Correct use of limits in $\frac{C}{x^2+3}$ 0.5 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2-1) + 3$ (b) (i) kh B1			$\frac{-4}{-2} + \frac{3\sqrt{3}}{-2}$ oe	A1	
$k = -2$ A1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 (b) (i) kh B1			2 2		
$k = -2$ A1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 (b) (i) kh B1					[5]
$k = -2$ A1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 (b) (i) kh B1	4	(i)	\underline{kx}	M1	
$k = -2$ A1 (ii) $\frac{6}{(-2)} \times \frac{1}{x^2 + 3}$ M1 Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 (b) (i) kh B1	•	(1)	$(x^2 + 3)^2$	1011	
Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 33 A1 (b) (i) kh B1			k = -2	A1	
Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 33 A1 (b) (i) kh B1					
Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 33 A1 (b) (i) kh B1					
Correct use of limits in $\frac{C}{x^2 + 3}$ M1 0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 33 A1 (b) (i) kh B1		(ii)	$\frac{6}{6} \times \frac{1}{2}$	M1	
0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 33 A1 (b) (i) kh B1		()	(-2) $x^2 + 3$		
0.5 A1 5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 33 A1 (b) (i) kh B1			Correct use of limits in $\frac{C}{C}$	M1	
5 (a) $f(15)$ evaluated or $fg(x) = 2(x^2 - 1) + 3$ M1 33 A1 (b) (i) kh B1			context use of minuts in $\frac{1}{x^2+3}$	1111	
33 (b) (i) kh B1			0.5	A1	
33 (b) (i) kh B1			<u>^</u>		[5]
(b) (i) kh B1	5	(a)			
			33	A1	
		A .)		D1	
(ii) h^2 or hh B1		(D)	(I) kh	BI	
			(ii) h^2 or hh	R1	
				וט	
(iii) $h^{-1}k^{-1}$ or $(kh)^{-1}$ B2			(iii) $h^{-1}k^{-1}$ or $(kh)^{-1}$	B2	
					[6]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0606	21

6		$m_{AB} = 2$	B1
		Uses $m_1m_2 = -1$ and point A	M1
		<i>AD</i> : $y-4 = -\frac{1}{2}(x-1)$ or $x + 2y = 9$ or $y = -\frac{1}{2}x + \frac{9}{2}$	A1
		CD: $y - 13 = 2(x - 13)$ or $y = 2x - 13$	B1
		Solve equation AD with equation CD	M1
		(7,1)	A1
			[6]
7	(a)	$\cot^2 x = \frac{1}{\tan^2 x}$	B1
		$\csc^2 x = 1 + \cot^2 x$	B1
		$=1+\frac{1}{p^2}$ or $\frac{p^2+1}{p^2}$	B1
	OR	Draw triangle with 1, p and $p^2 + 1$ correct B1	
		$\csc x = \frac{\sqrt{p^2 + 1}}{p} B1 \csc^2 x = \frac{p^2 + 1}{p^2} B1$	
	(b)	$\sec\theta = \frac{1}{\cos\theta}$	B1
		$\cos\theta$ Multiply out and correct use Pythagoras	M1
		$\frac{\sin^2\theta}{2}$	A1
		$\cos\theta$	
		$\frac{\sin\theta\sin\theta}{\cos\theta} = \sin\theta\tan\theta$	A1
			[7]
8	(i)	$\overrightarrow{OP} = \frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$ oe	M1 A1
		$\overrightarrow{OX} = \mu \left(\frac{3}{5} \mathbf{a} + \frac{2}{5} \mathbf{b} \right)$	A1
	(ii)	$\overrightarrow{OX} = \mathbf{a} + \lambda \mathbf{b}$ or $\overrightarrow{AX} = \mu \left(\frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}\right) - \mathbf{a}$	B1
		Equates a components	M1
		$\mu = \frac{5}{3}$	A1
		Equates b components	M1
		$\lambda = \frac{2}{3}$	A1
		3	[8]

	Pa	ge 6						ners' vers vember 2		5	yllabus 0606		aper 21
L			1	100			110		V I I	I	0000	1	- 1
9	(i)	$x\sqrt{x} \\ y\sqrt{x}$	1 3.40	2.83 4.13	5.20 5.07	8 6.20		1.18 7.47					B1
	(ii)	Plot po	oints on	graph									B2, 1, 0
	(iii)		ates grad + ± 0.001 = 0.1										M1 A1 B1
	(iv)	3.05											B1 [7]
10	(i)	$\begin{pmatrix} 5\\ 4 & - \end{pmatrix}$	0 13)										B2, 1, 0
	(ii)	Matrix $\begin{pmatrix} 7\\ -3 \end{pmatrix}$	multipl -18 -19	ication									M1 A1
	(iii)	$-\frac{1}{17}$	$ \begin{array}{r} -5 & -2 \\ -1 & 3 \end{array} $	$\left(\frac{1}{17}\right)$ or $\frac{1}{17}\left(\frac{1}{17}\right)$	$\begin{pmatrix} 5 & 2 \\ 1 & -3 \end{pmatrix}$								B1+B1
	(iv)	evalua	te $\begin{pmatrix} 23\\ 19 \end{pmatrix}$										M1
		x = 9, y	y = -2 or	$\binom{x}{y} = \begin{pmatrix} x \\ -x \end{pmatrix}$	$\binom{9}{-2}$								A1 [8]
11	(a)(i	i)Expre	ss in pov	wers of 5.	$\left(\frac{5^{2x+3}}{5^{4x}}\right)$	$=\frac{5^{2(2-x)}}{5^{3x}}$)						M1
		Use ru $\frac{1}{3}$	les of in	dices (2x	`) x) -	-3x)					M1 A1
	(ii)	2 = lg	3 term q										B1 B1 M1 A1
	(b)			$_2$ 9 + log ₁₂ bine 3 log									B1 M1 A1 [10]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0606	21

12E (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x+1} - \frac{1}{x}$	B1
	dx x+1 x	
	gradient tangent = $-\frac{1}{2}$	B1
	2	
	$y - \ln 2 = -\frac{1}{2}(x - 1)$	M1
	$y = \ln 2 = -\frac{1}{2}(x - 1)$	
	$A(1+2\ln 2,0)$	A1
	-(1,1,2)	A1
	$B\left(0,\frac{1}{2}+\ln 2\right)$	
	Uses $m_1m_2 = -1$ in equation of line $(y - \ln 2 = 2(x - 1))$	M1
	$c\left(1, \frac{1}{2}, 2, 0\right)$	A1
	$C\left(1-\frac{1}{2}\ln 2,0\right)$	
	$D(0,-2+\ln 2)$	A1
	$D(0; 2 + m^2)$	
(ii)	Valid method for area of triangle	M1
(11)	1.25 or $1.25 \times (\ln 2)^2$ or 0.601	Al
	$k = (\ln 2)^2$	Al
		[11]
12O (i)	Use product rule	M1
	$(x+1)e^x$	A1
	Solve $\frac{dy}{dr} = 0$	M1
	Solve $\frac{dx}{dx} = 0$	
	$\begin{pmatrix} 1 \end{pmatrix}$	A1
	$\left(-1,-\frac{1}{2}\right)$	
	Shows minimum	B1
	Shows minimum	DI
(ii)	Gradient tangent = 2e	B1
(11)	-	M1
	Use $m_1m_2 = -1$ in equation of line $\left(y - e = -\frac{1}{2e}(x - 1)\right)$	
	$R(1+2e^2, 0)$	A1
	$S\left(0, \frac{1+2e^2}{2e}\right)$	A1
	$S(\mathbf{v}, \mathbf{2e})$	
	$(1 + 2z^2)^2$	M1 A1
	Area of triangle = $\frac{(1+2e^2)^2}{4}$	
1		[11]