CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW −1, 2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

$ \frac{2 + 2\sin^2 \theta}{\cos^2 \theta} $ $ \frac{2}{\cos^2 \theta} = 2\sec \theta $ B1 For all methods look for: $ - \text{correct simplified expr} - \text{correct use of Pythagor} - \text{use of tan} = \frac{\sin}{\cos} $	
$\frac{2}{\cos^2 \theta} = 2 \sec \theta$ B1 $- \text{correct use of Pythagor} \\ - \text{use of tan} = \frac{\sin \theta}{\cos^2 \theta}$	
$\frac{1}{\cos^2 \theta} = 2 \sec \theta$ $- use of tan = \frac{\sin \theta}{\cos \theta}$	
$\sin^2 \theta$ 2 to $\cos^2 \theta$ - 2 to $\cos^2 \theta$ - use of $\sin^2 \theta$ - u	
$\frac{\sin^2 \theta}{\cos^2 \theta} = 2 \tan^2 \theta$ B1 $- \text{use of } \frac{1}{\cos^2 \theta} = \sec$	
$2 \sec^2 \theta = 2 + 2 \tan^2 \theta$ and completion B1 Award first 3 then last B final expression from ful correct method.	
Inconsistent no angle use -1 (can recover).	d then
If start from RHS award similarly.	
Or State of the part of the pa	
$(\sec \theta + \tan \theta)^2 + (\sec \theta - \tan \theta)^2$ [B1, B1]	
$2\sec^2\theta + 2\tan^2\theta$ B1	
$2(1 + \tan^2 \theta) + 2 \tan^2 \theta$ and completion B1]	
Or	
$\frac{2+2\sin^2\theta}{\cos^2\theta}$ [B1]	
$\frac{2\left(\sin^2\theta + \cos^2\theta\right) + 2\sin^2\theta}{\cos^2\theta}$ B1	
$\frac{4\sin^2\theta}{\cos^2\theta} = 4\tan^2\theta$	
$\frac{2\cos^2\theta}{\cos^2\theta} = 2 \text{ and completion} $ B1]	
2 (i) 3.2 B1	
(ii) 15 B1	
(iii) uses area to find distance M1 If split 2 or 3 correct form and must be attempting to area	
two of 40, 240 and 32 A1	
312 A1 or A2 for 312 from trape	zium

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

	<u> </u>		
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \sin x \cos x$	M1	
	k = -8	A1	
	Attempt to find x when $y = 8$	M1	Must get to $x =$ numerical value
	$x = \frac{\pi}{4} (0.785)$	A1	45° = A0 (but can still gain next 2 marks)
	Uses $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	Must use numerical value for x and 0.2 for $\frac{dx}{dt}$
	-0.8 (not rounded)	A1	(condone poor notation if correct terms multiplied)
4 (i)	Idea of modulus correct	B1	Two straight lines above and touching <i>x</i> -axis
	$\frac{1}{2}$ indicated on x-axis	B1	Must be a sketch
	2 indicated on <i>y</i> -axis	B 1	Must be a sketch
(ii)	$\frac{2}{3}$ (0.667)	B1	0.67 is B0
	Solve $4x - 2 = -x$ or $(4x - 2)^2 = x^2$	M1	As far as $x =$ numerical value
	$\frac{2}{5}$	A1	SC: If drawn then B1 , B2 for exact answers only
5 (i)	$(QR = PS =) \frac{96 - 3x}{2}$	B1	Can be implied by next statement
	$Area = \left(\frac{96 - 3x}{2}\right) \times x$	B1	AG
(ii)	$\frac{dA}{dx} = \frac{96 - 6x}{2}$ or $48 - 3x$ o.e.	B1	
	Solving $\frac{dA}{dx} = \frac{96 - 6x}{2} = 0$	M1	As far as $x =$ numerical value
	x = 16	A1	
	A = 384 and state maximum	A1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

6	Applies quotient rule correctly	M1	or product rule
	$\frac{(x-2)2 x - \left(x^2 + 8\right)}{(x-2)^2}$	A1	$2x (x-2)^{-1} - (x^2+8) (x-2)^{-2}$
	y = 12	B1	
	Uses $m_1 m_2 = -1$	M1	
	(Gradient normal = $\frac{1}{2}$)		
	Uses equation of line for normal	M1	If uses $y = mx + c$ must find c for M1
	$y-12 = \frac{1}{2}(x-4)$ or $y = \frac{1}{2}x+10$	A1	
7 (i)	$64 + 192x + 240x^2 + 160x^3$ mark final answer	B3, 2, 1, 0	3 terms correct earn B2 ; 2 terms correct earn B1 Can be earned in (ii); SC2 correct but unsimplified
(ii)	Multiply out $(1+3x)(1-x)$	M1	
	$1 + 2x - 3x^2$ o.e.	A1	
	$(1) \times (160) + (2) \times (240) + (-3) \times (192)$ o.e.	M1	3 terms
	64	A1	
	Or Multiply out $(1-x) (64 + 192x + 240x^2 + 160x^3)$	[M1	May be other variations: for first M1 find x^2 term or x^3 term
	$48x^2 - 80x^3$ o.e.	A1	
	Multiply by $1 + 3x$	M1	for second M1 must produce all relevant terms
	64	A1]	
	Or $(1+3x)(64+192x+240x^2+160x^3)$	[M1	
	$816x^2 + 880x^3$ o.e.	A1	
	Multiply by $1-x$	M1	
	64	A1]	

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

8	Eliminates <i>y</i> (or <i>x</i>) and full attempt at expansion	M1	
	$4x^2 - 8x - 96 = 0 \text{or } y^2 + 12y - 64 = 0$	A1	
	Factorise 3 term relevant quadratic	M1	Or use correct formula
	x = -4 and 6 or $y = -16 and 4$	A1	
	y = -16 and 4 or $x = -4 and 6$	A1 √	
	Uses Pythagoras for relevant points	M1	
	22.4 or $\sqrt{500}$ or $10\sqrt{5}$	A1	cao
9 (i)	Attempt to solve 3 term quadratic	M1	
	-3 and 8	A1	
	-3 < x < 8	A1	Condone $-3 < x$ AND $x < 8$
(ii)	4 < x (< 12)	B1	
	$S \cup T = -3 < x < 12$	B1	
(iii)	$S \cap T = 4 < x < 8$ or $S' = -5 < x \le -3, 8 \le x < 12$ and $T' = -5 < x \le 4$	B1	Penalise confusion over $<$ and \le (or $>$ and \ge) once only
	$-5 < x \le 4$	B 1√	their 4
	$8 \le x < 12$	B 1√	their 8 (Ignore AND/OR etc.)

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

10 (i)	$\frac{\sin\alpha}{50} = \frac{\sin 58}{240}$	M1 A1	Use of sin rule/cosine rule/resolving with 50, 240 and 58/32/122/148. Must be correct for A1
	$\alpha = 10.2$	A1	
	Bearing (0)21.8 or (0)22	A1 √	$\sqrt{\text{ for } 32 - \alpha}$
(ii)	$V^{2} = 240^{2} + 50^{2} - 2 \times 240 \times 50 \times \cos(122 - \alpha)$	M1	Correct use of sin rule/cosine rule/resolving
	V = 263 awt	A1	Can be in (i)
	$T = \frac{500}{V}$	M1	Only allow if <i>V</i> calculated from non right-angled triangle
	114 or 1 hour 54 mins	A1	Do not allow incorrect units
	Or $T = \frac{500\cos 32}{240\cos 21.8}$	[M1	Alternative for part (ii) only Also can find distance for 240 (457) then 457/240
	500 cos 32	B1	
	240 cos 21.8	B1	
	114 or 1 hour 54 mins	A1]	
11 (i)	1	B1	Not a range for k , but condone $x = 1$ and $x \ge 1$
(ii)	$f \ge -5$	B1	Not <i>x</i> , but condone <i>y</i>
(iii)	Method of inverse	M1	Do not reward poor algebra but allow slips
	$1+\sqrt{x+5}$	A1	Must be $f^{-1} =$ or $y =$
(iv)	f: Positive quadratic curve correct range and domain	B1	Must cross <i>x</i> -axis
	f^{-1} : Reflection of f in $y = x$	B1 √	\sqrt{their} f(x) sketch Condone slight inaccuracies unless clear contradiction.
(v)	Arrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term quadratic = 0	M1	
	4 only www	A1	Allow $x = 4$ with no working. Condone $(4, 4)$. Do not allow final A mark if -1 also given in answer

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	23

12 (i)	f(3) = (27 + 9 + 3a + b) = 0 or $3a + b = -36$	M1	Equate f(3) to 0
	f(-1) = (-1 + 1 - a + b) = 20 or $-a + b = 20$	M1	Equate f(-1) to 20
	Solve equations	M1	
	a = -14, b = 6	A1	If uses $b = 6$ then M0 , A0 Need both values for A1
(ii)	Find quadratic factor	M1	If division, must be complete with first 2 terms correct If writes down, must be $(x^2 + kx - 2)$
	$x^2 - 4x - 2$	A1	
	Use quadratic formula or completing square on relevant 3 term quadratic	M1	If completing square, must reach $\left(x + \frac{k}{2}\right)^2 = 2 \pm \left(\frac{k}{2}\right)^2$
	$\frac{-4 \pm \sqrt{16 + 8}}{2}$ or better	A 1√	
	$-2 \pm \sqrt{6}$ isw	A1	cao