MARK SCHEME for the May/June 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA-1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4		Mark Scheme				Syllabus	Paper		
			IGCSE – May/June 2013				ine 2013		0606	12
									•	
1	(i)	n(A)	(B) = 3	5				B 1		
	(ii)	n(A) = 16						B 1		
	(iii)	n (<i>B</i> ′	$(\cap A)$					B 1		
2	(i)	6 × 5	$\times 4 \times$	3 = 360	or ${}^{6}P_{4} = 3$	360		B 1	B1 unsimplified/e	valuated
	(ii)									
		Position 1 2 3 4								
		Number of ways5431								
		or $\frac{1}{6}$ (i) or ${}^{5}P_{3}$ or ${}^{5}C_{3} \times {}^{6}C_{1}$						M1	M1 for a correct a	ittempt
		Number of 4 digit numbers $= 60$					A1	unsimplified		
	(iii)									
		Position		1	2	3	4			
		Nur of w	nber vays	3	4	3	1			
		or ³ P Num	$P_1 \times {}^4P_1$ ber of	2 A digit n	umbers =	= 36		M1 A1	M1 for a correct a unsimplified	ttempt
3		EITI	HER							
		1-2	$1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$			B1	B1 for correct exp $(1 - \cos\theta - \sin\theta)^2$	ansion of		
	Use		Use of $\sin^2\theta + \cos^2\theta = 1$ in simplification = 0			M1	M1 for use of sin ² this form	$\theta \theta + \cos^2 \theta = 1$ in		
					A1	A1 must be convi	nced as AG			
		OR $(1 - \cos\theta - \sin\theta)^2 =$ $1 - 2\sin\theta - 2\cos\theta + \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta$			[B1	B1 for correct exp $(1 - \cos\theta - \sin\theta)^2$	ansion of			
		$= 2 - 2\sin\theta - 2\cos\theta + 2\sin\theta\cos\theta$					M1	M1 for use of sin ² this form	$\theta + \cos^2 \theta = 1$ in	
		= 2 (1 – sir	$(1 - \alpha)$	$\cos\theta$)			A1]	A1 for simplificat factorising	ion and

	Page 5	Mark Scheme	Syllabus	Paper		
		IGCSE – May/June 2	2013	0606	12	
4	$ \begin{array}{c} \mathbf{EIT} \\ 2x^2 \\ k \\ (k - 1) \end{array} $	HER + $kx + 2k - 6 = 0$ has no real roots $k^{2} - 16k + 48 < 0$ - 4) $(k - 12) < 0$	M1 DM1	M1 for attempted use of $b^2 - 4ac$ DM1 for attempt to obtain critica values from a 3 term quadratic		
	Criti 4 <	cal values 4 and 12 $k < 12$ or $k > 4$ and $k < 12$	A1 A1	A1 for both critical values A1 for correct final answer		
	OR	$\left(x + \frac{k}{4}\right)^2 - \frac{k^2}{16} + k - 3 = 0$	[M1]	M1 for attempting square and obtain quadratic	g to complete the a 3 term	
		$-\frac{k^2}{16} + k - 3 > 0 \text{ so } k^2 - 16k + 48 < 0$)	Then as EITHER	1	
	OR	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1	M1 for differentia zero and obtaining equation in x	ition, equating to g a quadratic	
	Whe By s lead	$\operatorname{en} \frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ k = -4x$ ubstitution $x^2 + 4x + 3 < 0$ ing to $x = -1, \ k = 4$	DM1	DM1 for attempt values of k from a quadratic in x following substitution to obt	to obtain critical 3 term owed by train a value for k	
	and	x = -3, k = 124 < k < 12 or k > 4 and k < 12	A1 A1]	A1 for both critica A1 for correct fina	al values al answer	
	OR	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x + k$	[M1]	M1 for differentia zero and obtaining equation in k	ution, equating to g a quadratic	
	Whe	$\operatorname{en} \frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ x = -\frac{k}{4}$ ing to $k^2 - 16k + 48 < 0$		Then as EITHER	L .	
	1544	0		1		

Page 6		Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2013		0606 12	
5	$2\left(\frac{15}{2}\right)$	$\left(\frac{5-4y}{3}\right)y = 9 \text{ or } 2x\left(\frac{15-3x}{4}\right) = 9$	M1	M1 for attempt to obtain equation in one variable	
	$8y^2 - (4y -$	$30y + 27 = 0 \text{ or } 3x^{2} - 15x + 18 = 0$ -9) (2y - 3) = 0 or (x - 3) (x - 2) = 0	DM1	DM1 for attempt quadratic in that v	to solve a 3 term variable
	x = 2	$x, y = \frac{9}{4}$ and $x = 3, y = \frac{3}{2}$	A1, A1	A1 for each 'pair' be simplified to si form	, x values must ngle integer
	AB^2	$= 1^2 + (0.75)^2, AB = 1.25$	M1, A1	M1 for a correct attempt to find <i>AB</i> , must have non zero differences and be using points calculated previously.	
6	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$= 3 \sec^2 x$	B1	B1 for $3\sec^2 x$	
	Whe	$n x = \frac{3\pi}{4}, \ \frac{dy}{dx} = 6$	B1	B1 for $\frac{dy}{dx} = 6$, m	ay be implied by
		<i>y</i> = 5	B1	later work B1 for <i>y</i>	
	Perp	endicular gradient = $-\frac{1}{6}$	M1	M1 for perpendicular from $\frac{dy}{dx}$	ular gradient
	Equa	ation of normal $y + 5 = -\frac{1}{6} \left(x - \frac{5\pi}{4} \right)$	M1	M1 for attempt at using <i>their</i> y value $x = \frac{3\pi}{4}$ and substi	the normal e correctly and tution of $x = 0$
	Whe	n $x = 0, y = \frac{\pi}{8} - 5$ o.e.			
		or -4.61 or -4.6 but not -4.60	A1	A1 for obtaining y	v value

Page		7 Mark Scheme			Syllabus	Paper
			IGCSE – May/June 2013		0606	12
7	(i)	f (-2) leads to $68 = b - 2a$	M1	attempt at f (-2) = allow unsimplified	= 0 d
		f(1) 1	eads to $26 = a + b$	M1	attempt at $f(1) = 2$ allow unsimplified	27 d
		a = -	14, $b = 40$	A1, B1	A1 for <i>b</i> = 40, B1	for $a = -14$
	(ii)	f(x)	$= (x+2) (6x^2 - 17x + 20)$	B2, 1, 0	-1 each error	
	(iii)	$6x^2 -$	17x + 20 = 0 has no real roots	B1	B1 for dealing with factor either by us completing the sq $b^2 - 4ac$ to show the real solutions	th quadratic be of formula, uare or use of hat there are no
		<i>x</i> = –	2	B 1		
8	(a) (i)	$ \begin{pmatrix} 22 \\ -3 \end{pmatrix} $	$\begin{pmatrix} -2 \\ 31 \end{pmatrix}$	B2, 1, 0	-1 each element e	rror
	(ii)	(16 9	$\begin{pmatrix} 6 \\ -11 \end{pmatrix}$	B2, 1, 0	-1 each element e	rror
	(b) (i)	$\frac{1}{18+}$	$\overline{9} \begin{pmatrix} 3 & -1 \\ 9 & 6 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{\text{determinar}}$ (allow unsimplified B1 for matrix	nt ed),
	(ii)	$\begin{pmatrix} x \\ y \end{pmatrix}$	$=\frac{1}{27} \begin{pmatrix} 3 & -1 \\ 9 & 6 \end{pmatrix} \begin{pmatrix} 5 \\ 1.5 \end{pmatrix},$	M1	M1 for correct use matrix, including multiplication to s	e of inverse correct solve equation
			$=\frac{1}{27}\binom{13.5}{54}$			
		x = 0	1.5, y = 2	A1, A1	A1 for each	

Page 8		3	Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2013	0606	12	
r					ſ	
9	(i)	(1+	$\left(\frac{1}{2}x\right)^n = 1 + n\left(\frac{x}{2}\right) + \frac{n(n-1)}{2}\left(\frac{x}{2}\right)^2$	B1, B1	B1 for 1 + second 3rd term Allow unsimplifie	term, B1 for
	(ii)	(1− <i>:</i>	$x\left(1+n\left(\frac{x}{2}\right)+\frac{n(n-1)}{2}\left(\frac{x}{2}\right)^{2}\right)$	M1	dealing with 2 terr	ms involving x^2
		Mult	iply x and $\frac{n}{2}x$ to get $\frac{n}{2}(x^2)$	DM1	attempt to obtain o	one term
		Mult	iply 1 and $\frac{n(n-1)x^2}{8}$ or $\frac{n(n-1)x^2}{4}$	DM1	attempt to obtain a	a second term
			$\frac{n^2 - n}{8} - \frac{n}{2} = \frac{25}{4}$			
			$n^2 - 5n - 50 = 0$	A1	correct quadratic e	equation
			n = 10	A1	A1 for $n = 10$ only	
10	(a) (i)	$\frac{1}{3}$ (2.	$(x-5)^{\frac{3}{2}}$	B1, B1	B1 for $k(2x-5)^{\frac{3}{2}}$ $\frac{1}{3}(2x-5)^{\frac{3}{2}}$, B1 for
	(ii)	$\frac{125}{3}$	$-\frac{1}{3} = \frac{124}{3}$ Allow awrt 41.3	M1, A1	M1 for correct use	e of limits
	(b) (i)	$x^3 \frac{1}{x}$	$x + 3x^2 \ln x$	B1, B1	B1 for each term, unsimplified	allow
	(ii)	$\int 3x$	$^{2} \ln x dx = x^{3} \ln x - \int x^{2} dx$ o.e.	M1	for a use of answe	er to (i)
		$\int x^2$	$dx = \frac{x^3}{3} \text{ or }$	A1	A1 for intergrating by 3	$g x^2$ or dividing
		$\int x^2$	$\ln x dx = \frac{1}{3} \left(x^3 \ln x - \int x^2 dx \right) \text{ o.e.}$			
		$\int x^2$	$\ln x dx = \frac{1}{3} \left(x^3 \ln x - \frac{x^3}{3} \right) (+c)$	A1		

	Pag	je 9	Mark Scheme	Syllabus	Paper	
			IGCSE – May/June 2013		0606	12
11	(a)	$\cos 2x$ -	$+\frac{2}{\cos 2x}+3=0$	M1	dealing with sec o	r cos
		leading	to $\cos^2 2x + 3\cos 2x + 2 = 0$ $2\sec^2 2x + 3\sec 2x + 1 = 0$	A1	simplification to c quadratic in sec 2x not have to be equ	orrect 3 term or $\cos 2x$ (does ated to zero)
		$(\cos 2x - \cos 2x)$	$(\cos 2x + 1) = 0$ 2x +1) (sec 2x + 1) = 0	M1	attempt to solve a 3 term quadratic, must obtain solutions in terms of $\cos 2x$	
		leading	to $\cos 2x = -1$ or $\sec 2x = -1$ only $2x = 180^{\circ}, 540^{\circ}$ $x = 90^{\circ}, 270^{\circ}$	A1, A1		
	(b)	$\sin^2\left(y\right)$	$\left(\begin{array}{c} -\frac{\pi}{6} \end{array}\right) = \frac{1}{2} \text{ so}$ $\left(\begin{array}{c} \pi \end{array}\right) = 1$			
		sin	$\left(y - \frac{1}{6}\right) = \frac{1}{\sqrt{2}}$	MI	division by 2 and	square root
		$\left(y-\frac{\pi}{6}\right)$	$=\frac{\pi}{4},\frac{3\pi}{4}$	DM1	correct order of op attempt to solve	peration and
		$y=\frac{5\pi}{12},$	$\frac{11\pi}{12}$	A1, A1		
12	(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = 36$	-6t	M1	attempt to different to zero	ntiate and equate
		W	When $\frac{\mathrm{d}y}{\mathrm{d}t} = 0$, $t = 6$	A1		
	(ii)	When v	= 0, t = 12	M1, A1	M1 for equating <i>v</i> attempt to solve	to zero and
	(iii)	$s = 18t^2$	$-t^{3}(+c)$	M1, A1	M1 for a correct a integrate at least c unsimplified	ttempt to ne term, allow
		When $t = 12, s = 864$			A1 for all correct A1 for $s = 864$	
	(iv)	When s	= 0, <i>t</i> = 18	M1	M1 for substitution <i>their s</i> equation	n of $s = 0$ into
				√A1	$\sqrt{\mathbf{A1}}$ on <i>their s</i>	
		v	= -324	DM1	DM1 for substitut back into <i>v</i> equation	ion of <i>their t</i> on
		S	o speed is 324		A1 for 324 only	