MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0606	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA-1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4	Mark Scheme: Teachers		Syllabus	Paper
		IGCSE – May/June 2		0606	12
1	(i) $\frac{2}{21}(7x-5)^{\frac{3}{2}}$ (+ a)	?)	B1 B1, B1	B1 for multiplication by B1 for $(7x-5)^{\frac{3}{2}}$, B1 for	5 2
	(ii) $\frac{2}{21} \left(16^{\frac{3}{2}} - 9^{\frac{3}{2}} \right)$ (= $\frac{74}{21}$ or awrt 3.52		M1 A1 [5]	M1 for correct use of line attempted integration, n $(7x-5)^{\frac{2n+1}{2}}$ from (i)	
2	$4u^{2} - 5u + 1 = 0$ (4u - 1) (u - 1) = 0 or (4.2 ^x - 1)(2 ^x - 1) = 0)	B1, M1 DM1	B1 for $2^{2x+2} = 4u^2$ or $4x^2$ M1 for attempt to obtain equation in terms of eith DM1 for solution of qua	n a 3 term quadratic her or, equated to zero.
	$2^{x} = \frac{1}{4}, 2^{x} = 1$	-	A1	A1 for both	udratie equation
	$4^{'}$ leading to $x = -2, 0$		A1	A1 for both	
	Alternate scheme for or $2^{x} = \frac{1}{4}$, leading to $x = -\frac{1}{4}$ $2^{x} = 1$, leading to $x = 0$		[A1] [A1] [5]		
3	$\frac{\cos A}{\sin A} + \frac{\sin A}{1 + \cos A}$ $= \frac{\cos A + \cos^2 A + \sin^2}{\sin A(1 + \cos A)}$	<u>A</u>	B1 M1	B1 for $\cot A = \frac{\cos A}{\sin A}$ M1 for obtaining as a since $\sin A$	ingle fraction
	$=\frac{(1+\cos A)}{\sin A(1+\cos A)}$		M1	M1 for use of $\cos^2 A +$	$\sin^2 A = 1$
	$=\frac{1}{\sin A}$ = c	osecA	A1	A1 for correct simplific	ation – answer given.
	Alternate solution:				
	$\cot A + \frac{\sin A(1 - \cos A)}{(1 + \cos A)(1 - \cos A)}$	· ·	[M1]	M1 for multiplying by ($(1-\cos A)$
	$= \cot A + \frac{\sin A(1 - \cos A)}{\sin^2 A}$	<u>4)</u>	[M1]	M1 for use of $\cos^2 A + \frac{1}{2}$	$\sin^2 A = 1$ anywhere
	$= \cot A + \frac{1 - \cos A}{\sin A}$		[M1]	M1 for cancelling sin A	
	$= \cot A - \cot A + \frac{1}{\sin A}$	leading to cosecA	[A1] [4]	A1 for subtraction and s	simplification

Page 5		Mark Scheme: Teach	ers' version	Syllabus	Paper
		IGCSE – May/Jur	ne 2012	0606	12
4	Using $y = \frac{2-5}{3}$	$\frac{x}{5}$ or, using $x = \frac{2-3y}{5}$	M1	M1 for substitution to go of one variable	et an equation in terms
	$5x^2 - 21x + 4 =$	0 or $3y^2 + 17y - 6 = 0$	M1	M1 for attempt to form	a 3 term quadratic
				equation $= 0$	

(5x-1)(x-4) = 0 or $(3y-1)(y+6) = 0$
$x = \frac{1}{5}, y = \frac{1}{3}$ $x = 4, y = -6$
Alternate substitutions:
$x = \frac{2y}{3+y} \text{or} y = \frac{3x}{2-x}$

5 (i)
$$(2-x^2)\frac{3}{(3x+1)} - 2x\ln(3x+1)$$

(ii)
$$\frac{5x(-2\sec^2 2x) - 5(4 - \tan 2x)}{25x^2}$$

or
$$\frac{5x(-2\sec^2 2x) - 5(4 - \tan 2x)}{(5x)^2}$$

6 (i)
$$\frac{8(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = 4(\sqrt{3}-1)$$

or $\frac{8}{\sqrt{3}+1} = a(\sqrt{3}-1),$
 $8 = a (\sqrt{3}-1)(\sqrt{3}+1)$

$$a = 4$$
(ii) $\sin 60 = \frac{\sqrt{3}}{2} = \frac{h}{4(\sqrt{3} - 1)}$
 $\tan 60 = \sqrt{3} = \frac{h}{2(\sqrt{3} - 1)}$
Or $(4(\sqrt{3} - 1))^2 = h^2 + (2(\sqrt{3} - 1))^2$

Or
$$(4(\sqrt{3}-1))^2 = h^2 + (2(\sqrt{3}-1))^2$$

 $h = 6 - 2\sqrt{3}$ ANSWER GIVEN

(iii) Area =
$$\frac{1}{2}4(\sqrt{3}-1)(6-2\sqrt{3})$$

or $\frac{1}{2}4(\sqrt{3}-1)4(\sqrt{3}-1)\sin 60^\circ$
= $16\sqrt{3}-24$

A1
M1 M1 for use of sine or tangent and their value
of *a* from (i) or
$$\frac{8}{\sqrt{3}+1}$$

or Pythagoras

M1 M1 for valid method for area using their
a from (i) or
$$\frac{8}{\sqrt{3}+1}$$

	Page 6 Mark Scheme: Teachers					Syllabus	Paper
			IGCSE – May/June 2	2012		0606	12
7	(i)			B1 B1 B1	B1 fo	for shape or $x = -2, 3$ or $y = 6$	
	(ii)	x = -3, 4	= -6, leading to	B1 B1 B1 [6]	B1 fc	or one correct answer or a second correct a or a third and fourth	answer
8	(i)	$\tan\frac{\pi}{3} = \frac{A}{1}$	$\frac{20\pi}{3} \text{ or } 20.94, 20.9$ $\frac{4X}{0}, \text{ AX} = 10\sqrt{3}, 17.3 \text{ (or } XB)$ $= \text{ awrt } 55.6 \text{ or } 20\sqrt{3} + \frac{20\pi}{3}$	B1 B1 B1	B1 fo	or arc length correct or <i>AX/XB</i> or final answer	t
	(ii)	Area of <i>C</i>	ector $AOB = \frac{1}{2}10^2 \frac{2\pi}{3}$ or 104.7 or 105 $PAXB = 100\sqrt{3}$ or 173.2 rea = awrt 68.5 or $100\sqrt{3} - \frac{100\pi}{3}$	B1 M1 M1 A1 [7]	M1 f <i>BX</i> fr M1 f (inde	from part (i) $(10 \times \text{th})$ for area $OAXB - \sec p$ pendent) be considering a q	area <i>OAXB</i> , using their heir <i>BX</i>) otor area used
9		x = 208 c	'their 8' or $x = 100$ ln their 8 or awrt 208	B1 B1 M1 A1	B1 fo B1 fo M1 f A1 fo	for 250 for $8 = e^{\frac{x}{100}}$ for dealing with e co	
	(iii)	$\frac{dN}{dx} = \frac{1}{2}e^{\frac{x}{10}}$ $45 = \frac{1}{2}e^{\frac{x}{10}}$ $e^{\frac{x}{100}} = 90$		B1, B1 M1 A1 [8]	M1 f	ŭ	$\frac{100}{100}$ or $\frac{30}{100}e^{100}$ $\frac{N}{1x}$ to 45 and attempt

	Page 7	Mark Scheme: Teachers	' version		Syllabus	Paper
		IGCSE – May/June 2	2012		0606	12
10	(a) (i) f'(x) f"(x)	$y = -(2 + x)^{-2}$ (x) = 2(2 + x)^{-3}	B1 B1	First B1 may be implied by a correct answer for f " (<i>x</i>) If done by quotient rule, allow unsimplified		
	(ii) $y = \frac{1}{2+x}, x = \frac{1}{y} - 2$			M1 f	or a valid attempt a	t the inverse
	f ⁻¹ (x	$x = \frac{1}{x} - 2 \text{ or } \frac{1 - 2x}{x}$	A1	A1 m	nust be in correct fo	orm, allow $y = \dots$
	(iii) $f^{2}(x) = \left(\frac{1}{2 + \frac{1}{2 + x}}\right) = \frac{2 + x}{5 + 2x}$				or correct attempt a	
		7	DM1		for attempt at solu	
	Equa	atting to -1 leads to $x = -\frac{7}{3}$ or -2.33	A1	A1 fo	or $x = -\frac{7}{3}$ or equiv	alent
	(b) (i) gh (x	c) or gh	B1	B1 fo	or either form	
	(ii) kg (x	c) or kg	B1 [9]	B1 fc	or either form	
11	(i) P (3, 1)		B1, B1	B1 fo	or each coordinate	
	Grad AB	$=\frac{18}{12}$	B1	B1 fo	or gradient of AB	
	\perp grad -	5	√B1	√B 1	for perpendicular g	radient
	<i>PQ</i> : <i>y</i> – 1	$= -\frac{2}{3}(x-3) \qquad (2x+3y=9)$	√B1		on their perp gradie $y = \dots$	ent and their point P
	(ii) Q(-15, 1		M1 A1		For use of $y = 13$ and or both coordinates	d their PQ equation. (can be implied)
	2	$\sqrt{18^2 + 12^2} \sqrt{8^2 + 12^2}$	M1	M1 f	for a valid attempt a	it area $\frac{1}{2} \times PQ \times PB$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Matri corre	ix method using the otly	eir coordinates
		$\frac{1}{2} \times 26 \times 12$ 156	A1	$\frac{1}{2} \times Q$	$QB \times \text{vertical perp h}$	eight
		100	AI [9]			

	Page 8		Mark Scheme: Teachers' version		Paper
		IGCSE – May/June	2012	0606	12
12	EITHER (i) velocity = position = = 90i + 64	$= (54\mathbf{i} + 16\mathbf{j}) + (36\mathbf{i} + 48\mathbf{j})$	M1 A1	M1 for (3 × their velocity (mu form)) + (54 \mathbf{i} + 16 \mathbf{j})	st in numeric vector
	(iii) At 16 00,	(12ti + 16tj) travelled' (102i + 80j)	M1, A1 B1	M1 for position vector velocity vector \times time) B1 for (102i + 80j)	+ (their numeric
		s to do this in 2 hours y of boat $(51\mathbf{i} + 40\mathbf{j})$ $1^2 + 40^2$	M1 A1	M1 for attempt at veloc	ity of boat and speed
	(iv) $(51i + 40j)$ = 39i +24	j) – (12 i + 16 j) j	B1	B1 , allow unsimplified	but must be correct
	(v) $\tan \alpha = \frac{5}{4}$ angle = 5		M1 A1 [10]	M1 for use of tan and the	neir velocity vector

	Page 9	Mark Scheme: Teachers	' version		Syllabus	Paper	
		IGCSE – May/June 2	2012		0606	12	
12	OR (i) $\overrightarrow{OQ} \mathbf{a} + \frac{1}{3}$)	B1	Allov	w unsimplified		
	$\overrightarrow{PQ} = -\frac{5}{4}$	$\mathbf{a} + \frac{1}{3}\mathbf{b}$ $\mathbf{b} + \mathbf{a} + \frac{1}{3}(\mathbf{b} - \mathbf{a})$ $\mathbf{a} - \frac{11}{12}\mathbf{b}$	√B1		ow through on their nplified	\overrightarrow{OQ} , allow	
	(ii) $\overrightarrow{QR} = \lambda \mathbf{a}$	$-\left(\mathbf{a}+\frac{1}{3}\ (\mathbf{b}-\mathbf{a})\right)$	M1	M1 f	for λa – their \overrightarrow{OQ}		
	$=\lambda \mathbf{a}$	$-\frac{2}{3}\mathbf{a}-\frac{1}{3}\mathbf{b}$	A1	A1 -	allow unsimplified	I	
	(iii) $\overrightarrow{QR} = \mu(\overrightarrow{R})$		M1	M1 f	for attempt to obtain	\overrightarrow{QR} in terms of \overrightarrow{R}	\overrightarrow{PQ}
	$(1-\mu)\overline{QR}$	$\vec{R} = \mu \vec{PQ}$	M1	M1 f	for attempt to simpl	ifiy	
	$QR = \frac{\mu}{1 - \mu}$	$\frac{1}{\mu}\left(\frac{2}{3}\mathbf{a}-\frac{11}{12}\mathbf{b}\right)$	A1				
		b 's $-\frac{11}{12}\frac{\mu}{1-\mu} = -\frac{1}{3}$	M1	M1 f solve	for equating like ver	ctors and attempt to	0
	$\mu = \frac{4}{15}$		A1	A1 f	or each		
	$\lambda = \frac{10}{11}$		A1 [10]				