CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22 Paper 2 (Paper 22), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®], components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

1 (i)	4	B 1	
(ii)	360	B1	or 2π
(iii)	0 90 180 270 360 X	B2	Correct symmetrical shape; one cycle; both maximums at 1 and minimum at –7
2 (a) (i)	$({}^{9}C_{3} =) 84$	B1	
(ii)	$({}^{9}P_{5} =) 15120$	B1	
(b)	$\frac{2}{6} \times 6!$ or $5! + 5!$ oe 240	M1 A1	or clear indication of method
3	Eliminate x or y $3x^2 + 2x - 8 = 0 \text{ or } 12y^2 - 44y + 32 = 0 \text{ oe}$	M1 A1	
	Factorise 3 term quadratic oe	M1	correct method
	$x = \frac{4}{3} \text{ and } -2$	A1	
	$y = \frac{8}{3} \text{ and } 1$	A1	Or allow A1 A1 for each (x, y) pair
			If second M0 then SC1 for one (x, y) pair found by inspection i.e. with no method or with no incorrect method shown

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

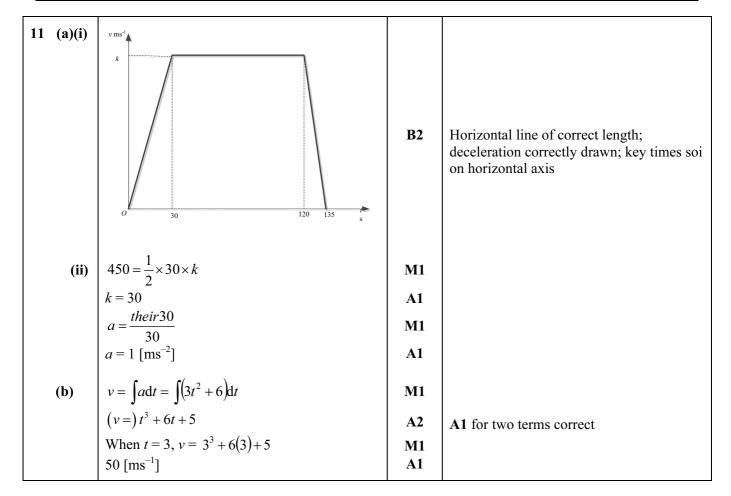
4 (i)	$\sin x \left(their \left(-\sin x \right) \right) + \cos x \left(their \cos x \right)$	M1	clearly applies correct form of product rule
	$-\sin^2 x + \cos^2 x$ oe	A1	If M1 A0 A0 then allow SC1 for
	$1-2\sin^2 x$ oe	A1	$\sin^2 x - \cos^2 x = 2\sin^2 x - 1$
(ii)	$\int (1 - 2\sin^2 x) dx = \sin x \cos x (+c)$	M1	or $\int \sin^2 x dx = \frac{1}{-2} \left(\int (-2\sin^2 x + 1) dx - \int 1 dx \right) \text{ oe}$
	$-2\int \sin^2 x dx = \sin x \cos x - \int 1 dx$	M1	$\int \sin^2 x dx = \frac{1}{-2} \sin x \cos x - \frac{1}{-2} \int 1 dx$
	$\frac{x}{2} - \frac{1}{2}\sin x \cos x \ [+c] \text{ oe isw}$	A1	- 2 - 2 •
5 (i)	6i + 2j - (-2i + 17j) = $8i - 15j$	B1	
(ii)	$\sqrt{their8^2 + their(-15)^2}$	M1	
	$\frac{their(8\mathbf{i}-15\mathbf{j})}{their17}$	A1ft	ft their \overrightarrow{AB}
(iii)	$-2\mathbf{i} + 17\mathbf{j} + m(6\mathbf{i} + 2\mathbf{j})$ leading to	M1	
	17 + 2m = 0 m = -8.5 oe	M1	If MO allow SC1 for Co. 2 = 0 leading to
	_53 i	A1	If M0 , allow SC1 for $6m - 2 = 0$ leading to $\frac{53}{3}$ j
6 (i)	$15\pi = 20\theta$	M1	
	$\theta = \frac{3}{4}\pi$ or exact equivalent form isw	A1	
(ii)	Sector plus triangle approach: Area sector = $\frac{1}{2} \times 20^2 \times \left(their \frac{3}{4}\pi\right)$ soi		Semicircle less segment approach: Area sector = $\frac{1}{2} \times 20^2 \times \left(\frac{1}{200} + \frac{1}{200}\right)$ soi
		B1	Area sector = $\frac{1}{2} \times 20^2 \times \left(their \frac{1}{4}\pi\right)$ soi
	Area triangle = $\frac{1}{2} \times 20^2 \times \sin\left(their \frac{1}{4}\pi\right)$ soi	B1	
	their sector area + their triangle area	M1	$\frac{\pi(20)^2}{2}$ – (their area sector – their area
	613 or 612.6(60254) rot to 4 sig figs	A1	triangle) soi

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

	(-14 45)		
7 (i)	$\mathbf{A}^2 = \begin{pmatrix} 17 & 13 \\ -27 & 85 \end{pmatrix} \text{ seen}$	M1	condone one error
	$\mathbf{A}^2 = \begin{pmatrix} -14 & 45 \\ -27 & 85 \end{pmatrix} \text{ seen}$ $\begin{pmatrix} -11 & 50 \\ -23 & 95 \end{pmatrix}$	A1	
(ii)	10	B1	
(iii)	$\frac{1}{their10}$ or $\begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix}$ oe, seen	B1	
	$\frac{1}{10} \begin{pmatrix} 10 & -5 \\ -4 & 3 \end{pmatrix} \text{ oe isw}$	B1	
(iv)	$\mathbf{X} = \mathbf{B}^{-1}\mathbf{A}$ soi	M1	
	$\mathbf{X} = \mathbf{B}^{-1} \mathbf{A} \text{ soi}$ $\begin{pmatrix} 0.5 & 0 \\ -0.5 & 1 \end{pmatrix} \text{ oe}$	A1ft	ft their B ⁻¹
8 (i)	(4, 2)	B 1	allow unsimplified
	$m_{AB} = \frac{3}{2} \Rightarrow m_{Perp} = -\frac{2}{3}$	M1	allow arithmetic slips provided method is correct
	$y-2 = -\frac{2}{3}(x-4) \text{ oe}$ $2x+3y=14$	M1	ft their mid-point and perpendicular gradient
	2x + 3y = 14	A1	allow any correct equivalent form with integer a, b, c
(ii)	m_{AB} used $y + 2 = their \ m_{AB}(x - 10)$	M1 A1ft	
(iii)	$(10-6)^2 + (5-(-2))^2$ oe	M1	any valid method
	$\sqrt{65}$ or 8.0622577 rot to 3 or more sf	A1	
(iv)	$AC^2 = (2-10)^2 + (-1-(-2))^2$ and $AC^2 = BC^2 = 65$ or showing <i>C</i> lies on the perpendicular bisector of <i>AB</i> or showing line from <i>C</i> to (4, 2) is perpendicular to <i>AB</i>	В1	any valid method

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	22

	1/2 1/-3		
9 (i)	$k(2x+1)^{3}$	M1	
	$-8(2x+1)^{-3} \times 2$ oe	A1	
	+ 2	B 1	
	their $\frac{dy}{dx} = 0$ and solves	M1	
	$x = \frac{1}{2}, y = 2$	A1	
(ii)	$y = 4 \times \frac{1}{2} = 2$	B1	or equivalent correct method
(iii)	6 4		Alternative method:
	$\int \left(\frac{1}{(2x+1)^2} + 2x \right) dx$	M1	M1 for $\int \left(\frac{4}{(2x+1)^2} + 2x - 4x \right) dx$
	$k(2x+1)^{-3}$ $-8(2x+1)^{-3} \times 2 \text{ oe}$ $+ 2$ $their \frac{dy}{dx} = 0 \text{ and solves}$ $x = \frac{1}{2}, y = 2$ $y = 4 \times \frac{1}{2} = 2$ $\int \left(\frac{4}{(2x+1)^2} + 2x\right) dx$ $4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} \text{ or better}$	A1	A1 for $4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} - 2x^2$ or better
	$\left[their \left(4 \times \frac{(2x+1)^{-1}}{-2} + \frac{2x^2}{2} \right) \right]_0^{their 0.5}$	M1	M1 for $\left[their \left(4 \times \frac{(2x+1)^{-1}}{-2} - \frac{2x^2}{2} \right) \right]_0^{their 0.5}$
	Substitution of correct limits seen, leading	A1	
	to $1\frac{1}{4}$		M1 for subst of <i>their</i> limits into <i>their</i> genuine attempt at an integral
	Shaded area = $their 1\frac{1}{4} - their \frac{1}{2}$	M1	A1 for subst of correct limits into correct expression
	$\frac{3}{4}$	A1	A1 for for $\frac{3}{4}$


Page 6	Mark Scheme		Paper
	Cambridge IGCSE – March 2015	0606	22

10 (a)	(i)	В3	B1 correct shape B1 through (0, -4) B1 through (ln5, 0)
	(ii) $k \leq -5$	B1	
(b)	$\frac{1}{2}\log_a 2 + 3\log_a 2 - \log_a 2 \text{ or } \log_a \left(2^{\frac{1}{2}} \times 2^3 \times 2^{-1}\right) \text{ oe}$		
	$\log_a\left(2^{\frac{1}{2}}\times 2^3\times 2^{-1}\right)$ oe	M1	condone one error
	$2\frac{1}{2}\log_a 2$ oe	A1	
(c)	$\log_3 9$ $\log_9 3$	B1	soi
	$\log_3 x - \frac{\log_3 4x}{2} = 1$ or $\frac{\log_9 x}{\frac{1}{2}} - \log_9 4x = 1$	M1	
	$\log_3 \frac{x}{(4x)^{\frac{1}{2}}} = \log_3 3 \text{ or } \log_9 \frac{x^2}{4x} = \log_9 9 \text{ oe}$	M1	
1	x = 36	A1	

A1

x = 36

Page 7	Mark Scheme S		Paper
	Cambridge IGCSE – March 2015	0606	22

