MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®] components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus Paper		
	Cambridge IGCSE – March 2	0606 12		
1 (i)	Members who play football or cricket , or both	B1		
(ii)	Members who do not play tennis	B 1		
(iii)	There are no members who play both football and tennis	B1		
(iv)	There are 10 members who play both cricket and tennis.	B1		
2	$kx - 3 = 2x^{2} - 3x + k$ $2x^{2} - x(k+3) + (k+3) = 0$ Using $b^{2} - 4ac$,	M1	for attempt to obtain a 3 term quadratic equation in terms of x	
	$(k+3)^2 - (4 \times 2 \times (k+3))$ (< 0)	DM1	for use of $b^2 - 4ac$	
	$(k+3)^{(k+3)}(k-3)^{(k+3)}(<0)$	DM1	for attempt to solve quadratic equation, dependent on both previous M marks	
	Critical values $k = -3, 5$ so $-3 < k < 5$	A1 A1	for both critical values for correct range	
3 (i)		B1 B1 B1	for shape, must touch the <i>x</i> -axis in the correct quadrant for <i>y</i> intercept for <i>x</i> intercept	
(ii)	$4-5x = \pm 9$ or $(4-5x)^2 = 81$	M1	for attempt to obtain 2 solutions, must be a complete method	
	leading to $x = -1$, $x = \frac{13}{5}$	A1, A1	A1 for each	
4 (i)	$729 + 2916x + 4860x^2$	B1,B1 B1	B1 for each correct term	
(ii)	$2 \times their 4860 - their 2916 = 6804$	M1 A1	for attempt at 2 terms, must be as shown	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

5 (i)	gradient = 4 Using either (2, 1) or (3, 5), $c = -7$	B1 M1	for gradient, seen or implied for attempt at straight line equation
	$e^{y} = 4x + c$		to obtain a value for c
	so $y = \ln(4x - 7)$	M1,A1	for correct method to deal with e^y
	Alternative method:		
	$\frac{y-1}{5-1} = \frac{x-2}{3-2}$ or equivalent	M1	for attempt at straight line equation using both points
		A1	allow correct unsimplified
	$e^{y} = 4x - 7$ so $y = \ln(4x - 7)$	M1 A1	for correct method to deal with e^{y}
(ii)	$x > \frac{7}{4}$	B1ft	ft on <i>their</i> $4x - 7$
(iii)	$\ln 6 = \ln(4x - 7)$		
	$\ln 6 = \ln(4x - 7)$ so $x = \frac{13}{4}$	B1ft	ft on <i>their</i> $4x - 7$
6 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x(2\sec^2 2x) - \tan 2x}{x^2}$	M1	for attempt to differentiate a
		A2,1,0	quotient (or product) -1 each error
	Or $\frac{dy}{dx} = x^{-1} (2 \sec^2 2x) + (-x^{-2}) \tan 2x$	A2,1,0	
(ii)	When $x = \frac{\pi}{8}$, $y = \frac{8}{\pi}$ (2.546)	B1	for <i>y</i> -coordinate (allow 2.55)
	When $x = \frac{\pi}{8}, \ \frac{dy}{dx} = \frac{\frac{\pi}{2} - 1}{\frac{\pi^2}{2}}$		
	$=\frac{32}{\pi} - \frac{64}{\pi^2} (3.701)$		
	Equation of the normal:		
	$y - \frac{8}{\pi} = -\frac{\pi^2}{32(\pi - 2)} \left(x - \frac{\pi}{8}\right)$	M1	for an attempt at the normal, must be working with a perpendicular
	y = -0.27x + 2.65 (allow 2.66)	A1	gradient allow in unsimplified form in terms of π or simplified decimal form

	Page 4	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – March 20	015		0606	12
7		(1), a, b, 3, c	M1	for correct	$\frac{1}{1}$	
/	(i)	$p\left(\frac{1}{2}\right):\frac{a}{8}+\frac{b}{4}-\frac{3}{2}-4=0$	IVII	for correct use of $x = \frac{1}{2}$		
		Simplifies to $a + 2b = 44$ p(-2): -8a + 4b + 6 - 4 = -10	M1	for correct use of $x = -2$,
		Simplifies to $2a - b = 3$ oe	DM1	for solution of equations		
		Leads to $a = 10, b = 17$	A1	for both, be careful as AG for <i>a</i> , allow verification		
	(ii)	$p(x) = 10x^3 + 17x^2 - 3x - 4$	B2,1,0	-1 each em	ror	
		$= (2x-1)(5x^2+11x+4)$				
	(iii)	$x = \frac{1}{2}$	B 1			
		$x = \frac{-11 \pm \sqrt{41}}{10}$				
		$x = \frac{10}{10}$	B1, B1			
8	(a) (i)	Range $0 \le y \le 1$	B 1			
	(ii)	Any suitable domain to give a one-one function	B1	e.g. $0 \le x$	$\leq \frac{\pi}{4}$	
	(b) (i)	$y = 2 + 4 \ln x$ oe	M1	for a complete method to find the inverse		o find the
		$\ln x = \frac{y-2}{4} \text{oe}$		inverse		
		$g^{-1}(x) = e^{\frac{x-2}{4}}$	A1	must be in	the correct fo	orm
		Domain $x \in$	B 1			
		Range $y > 0$	B 1			
	(ii)	$g(x^2+4)=10$	M1	for correct	order	
		$2 + 4\ln(x^2 + 4) = 10$	DM1	for attempt	t to solve	
		leading to $x = 1.84$ only	A1	for one sol	ution only	
		Alternative method:				
		$h(x) = x^{2} + 4 = g^{-1}(10)$	M1	for correct		
		$g^{-1}(10) = e^2$, so $x^2 + 4 = e^2$ leading to $x = 1.84$ only	DM1	for attempt		
		$\lambda = 1.04$ Only	A1	for one sol	unon only	
	(iii)	$\frac{4}{x} = 2x$	B 1	for given equation, allow in this form		<i>w</i> in this
		$x^2 = 2$	M1	for attempt to solve, must be using derivatives		
		$x = \sqrt{2}$	A1		ution only, al	low 1.41 or

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

	or area of triangular face
Volume of prism = $\frac{\sqrt{3}x^2}{4} \times y$ M1 for	or attempt at volume <i>their</i> area $\times y$
$\frac{\sqrt{3}x^2}{4} \times y = 200\sqrt{3}$	
	or correct relationship between x
$A = 2 \times \frac{\sqrt{3x}}{4} + 2xy \qquad \qquad \mathbf{M1} \qquad \text{for}$	nd <i>y</i> or a correct attempt to obtain urface area using <i>their</i> area of
leading to $A = \frac{\sqrt{3}x^2}{2} + \frac{1600}{r}$ A1	riangular face or eliminating <i>y</i> correctly to obtain iven answer
(ii) $\frac{\mathrm{d}A}{\mathrm{d}x} = \sqrt{3}x - \frac{1600}{x^2}$ M1 for	or attempt to differentiate
ux V3	or equating $\frac{dA}{dx}$ to 0 and attempt
x = 9.74 A1 fo	o solve or correct x
so $A = 246$ A1 for	or correct A
	or attempt at second derivative and
so the value is a minimum A1ft ft	onclusion, or alternate methods t for a correct conclusion from
	ompletely correct work, follow nrough on <i>their</i> positive <i>x</i> value.
10 (i) $\tan \theta = \frac{1+2\sqrt{5}}{6+3\sqrt{5}} \times \frac{6-3\sqrt{5}}{6-3\sqrt{5}}$ M1 for	or attempt at $\cot \theta$ together with
	ationalisation Aust be convinced that a calculator
$=\frac{36-45}{36-45}$ is	s not being used.
$=\frac{8}{3}-\sqrt{5}$ A1, A1 A	1 for each term
	or attempt to use the correct lentity or correct use of
$\frac{\partial^2 - \partial^2 \theta}{\partial \theta} + 5 + 1 = \csc^2 \theta$	by thagoras' theorem together with beir answer to (i)
M	Aust be convinced that a calculator s not being used.
so $\csc^2 \theta = \frac{118}{9} - \frac{16\sqrt{5}}{3}$ A1, A1 A	1 for each term
Alternate solutions are acceptable	

Page 6	Mark Scheme	Syllabus Paper	
	Cambridge IGCSE – March 2	0606 12	
			1
11 (a) (i)	LHS = $\frac{\frac{1}{\sin y}}{\frac{\cos y}{\sin y} + \frac{\sin y}{\cos y}}$	M1	for dealing with cosec, cot and tan in terms of sin and cos
	$=\frac{\frac{1}{\sin y}}{\frac{\cos^2 y + \sin^2 y}{\sin y \cos y}}$	M1	for use of $\sin^2 y + \cos^2 y = 1$
	$= \frac{1}{\sin y} \times \sin y \cos y$ $= \cos y$	A1	for correct simplification to get the required result.
(ii)	$\cos 3z = 0.5$ $3z = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$	M1	for use of (i) and correct attempt to deal with multiple angle
	$z = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$	A1, A1	A1 for each 'pair' of solutions
(b)	$2\sin x + 8(1-\sin^2 x) = 5$	M1	for use of correct identity
	$8\sin^{2} x - 2\sin x - 3 = 0$ (4 sin x - 3)(2 sin x + 1) = 0 sin x = $\frac{3}{4}$, sin x = $-\frac{1}{2}$	M1	for attempt to solve quadratic equation
	$\sin x = \frac{1}{4}$, $\sin x = -\frac{1}{2}$ $x = 48.6^{\circ}$, 131.4° 210°, 330°	A1, A1	A1 for each pair of solutions