

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			0580/22
Paper 2 (Extended)			May/June 2014
			1 hour 30 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	Electronic calculator	Geometrical instrume	nts

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Tracing paper (optional)

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

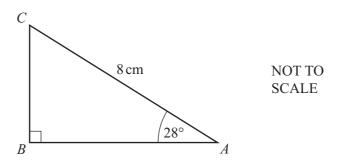
For π , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 70.

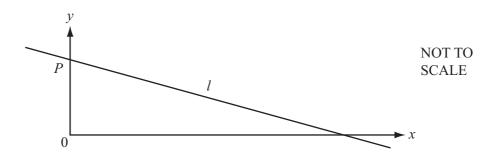
The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.



1	Calculate $\frac{\sqrt[3]{16}}{1.3^2}$.				
		Answer	[1]		
2	(a) Write 569 000 correct to 2 significant figure	S.			
		Answer(a)	[1]		
	(b) Write 569 000 in standard form.				
		Answer(b)	[1]		
3	Solve the simultaneous equations. $2x - y = 3x + y = 3x $	7 3			

 $Answer x = \dots$

y =.....[2]


4

Calculate the length of AB.

Answer AB =	:	cm	[2]
-------------	---	----	-----

5

The equation of the line *l* in the diagram is y = 5 - x.

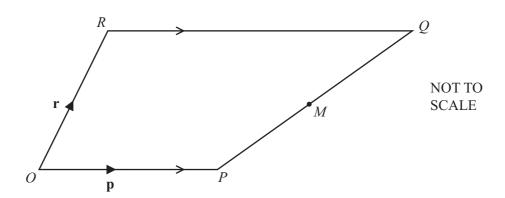
(a) The line cuts the y-axis at P.

Write down the co-ordinates of P.

(b) Write down the gradient of the line l.

6	The mass of 1 cm ³ of copper is 8.5 grams, correct to 1 decimal place. Complete the statement about the total mass, <i>T</i> grams, of 12 cm ³ of copper.				
	$Answer \dots \leq T < \dots $ [2]				
7	Write the following in order, smallest first.				
	$\sqrt{0.1}$ $\frac{43}{201}$ $2\frac{1}{2}\%$ 0.2				
	Answer < < [2]				
8	Without using your calculator, work out $\frac{5}{6} - \left(\frac{1}{2} \times 1\frac{1}{2}\right)$.				
	Write down all the steps of your working.				
	<i>Answer</i>				

9	At the beginning of July, Kim had a mass of 63 kg. At the end of July, his mass was 61 kg.							
	Calculate the percentage loss in Kim's mass.							
		Answer	% [3]					
10	$V = \frac{1}{3}Ah$							
	(a) Find V when $A = 15$ and $h = 7$.							
		$Answer(a) V = \dots$	[1]					
	(b) Make <i>h</i> the subject of the formula.							
		$Answer(b) h = \dots$	[2]					


11	Anita buys a computer for \$391 in a sale. The sale price is 15% less than the original price.		
	Calculate the original price of the computer.		
		Answer \$	[3]
12	Solve the equation.		
	$\frac{3}{2x} + \frac{1}{x+1} = 0$		
	2 <i>x x</i> · 1		
		<i>Answer x</i> =	[3]

13	w varies inversely as the square root of x .
	When $x = 4$, $w = 4$.

Find w when x = 25.

Answer w = [3]

14

OPQR is a trapezium with RQ parallel to OP and RQ = 2OP.

O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$.

M is the midpoint of \overline{PQ} .

Find, in terms of \mathbf{p} and \mathbf{r} , in its simplest form

(a) \overrightarrow{PQ} ,

Answer(a)
$$\overrightarrow{PQ} = \dots$$
 [1]

(b) \overrightarrow{OM} , the position vector of M.

$$Answer(b) \overrightarrow{OM} =$$
 [2]

15
$$\mathbf{M} = \begin{pmatrix} 4 & 2 \\ 3 & 5 \end{pmatrix}$$
 Find

(b) u + 4t + ux + 4tx

(a) M^2 ,

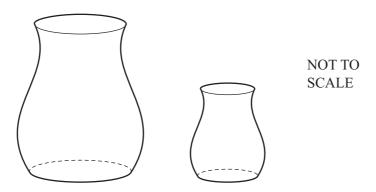
	(b) the determinant of M .	Answer(a)	[2]
		Answer(b)	[1]
16	Factorise completely.		
	(a) $4p^2q - 6pq^2$		

 $Answer(a) \qquad [2]$

Answer(b) [2]

17 (a) Simplify $(3125t^{125})^{\frac{1}{5}}$.

Amanuania	1	гот
Answer(a)	·	-121


(b) Find the value of p when $3^p = \frac{1}{9}$.

$$Answer(b) p = \dots [1]$$

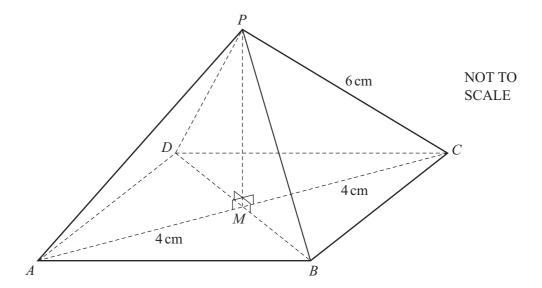
(c) Find the value of w when $x^{72} \div x^w = x^8$.

$$Answer(c) w = \dots [1]$$

18

The two containers are mathematically similar in shape.

The larger container has a volume of 3456 cm³ and a surface area of 1024 cm².


The smaller container has a volume of 1458 cm³.

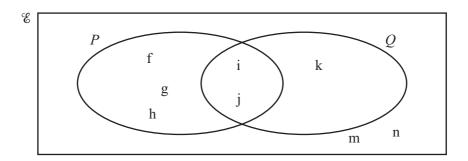
Calculate the surface area of the smaller container.

19 Simplify.

$$\frac{x^2 + 6x - 7}{3x + 21}$$

						Ai	nswer	 	[4]
20			32	25	18	11	4		
	The	ese are the first 5	5 terms of a seque	nce.					
	Fine	d							
	(a)	the 6th term,							
						Answ	ver(a)		[1]
	(b)	the <i>n</i> th term,				11.00 //	, c, (u)		[+]
	()	,							
						Answ	ver(b)	 	[2]
	(c)	which term is	equal to -332.						
						Answ	ver(c)	 	[2]

The diagram shows a pyramid on a square base ABCD with diagonals, AC and BD, of length 8 cm. AC and BD meet at M and the vertex, P, of the pyramid is vertically above M. The sloping edges of the pyramid are of length 6 cm.


Calculate

(a) the perpendicular height, PM, of the pyramid,

(b) the angle between a sloping edge and the base of the pyramid.

Answer(b) [3]

22

(a) Use the information in the Venn diagram to complete the following.

(i)
$$P \cap Q = \{\dots\}$$

(ii)
$$P' \cup Q = \{\dots\}$$

(iii)
$$n(P \cup Q)' = ...$$
 [1]

(b) A letter is chosen at random from the set Q.

Find the probability that it is also in the set *P*.

- (c) On the Venn diagram shade the region $P' \cap Q$. [1]
- (d) Use a set notation symbol to complete the statement.

$$\{f, g, h\}$$
 P

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.